Both the arrest and thecreationofmovement are fundamental aspects of dynamics on macroscopic as well as microscopic levels. Brakes and motors dominate the operation of machines, be they those of daily life, such as vehicles and appliances, or those of living systems. like muscles and Ilagellae. On the molecular level motion is thenorm;spontanwus freerotationaroundsinglebonds is thus the rule, not the exception. In machines of ordinary experience, such as automobiles, the brake is often as important as the accelerator. We now report the first molecular analog: a reversible molecular brake. Figure I presents theconcept inbothgeneral andspecific terms. 1 (biako ofl) 3 (brako on) -"W 2 (brake ott) 4 (brake on) Figure 1. Conceptualandaetualdepictionoftheoperationofa molecular brake. With the brakedisengaged. the wheel-(a) representedasa threetoothed gear ( I ) and (b) constructed as a triptycene (2)' -spins rapidly. Engagement ofthe brake (3and4) slowsorstopsrotation. With the actual system, the brake is activated remotely (2 -4) by addition of Hg2+ ion. In the absence of Hgz+ (or other metal ions), the triptycene wheel spins rapidly a t 30 OC, as evidenced by the simplicity of the 'H NMR spectrum of 2 (Figure 2b). wherein by virtue of C, symmetry arising from relatively rapid rotation, the 12 triptycene aromatic protons give rise to only four sets (asterisked) of resonances. Addition of Hg(OzCCF3)z to 2 results in profound changes in the 30 OC (and other) 'H NMR spectrum (Figure 3a). Most noteworthy are the change in the extraordinarychemicalshiftoftheB-ringmethoxyin 2 (6 2.1 to a normal 6 4. I 3 value (not shown) and the obvious broadening of the four resonances attributable to the hydrogens in the three benzo rings of the triptycene. Variable-temperature 'H NMR experiments3 (see Figure 3) document the engagement of the brake. In particular, a t -30 OC (contrast Figure 2),thethreearomaticringsofthetriptyceneare nolongerequivalent becauseofthearrest ofrotation on theNMR . . ( I ) For the use of triptycenaas gean see, inter alia (a) Guenzi. A,: Johnson. C.(2) The 9-ring mcthary group is evidently (see models) in the shielding zone of the lriplycene knzo rings; the B-ring melhory group in 9 is similarly shielded (6 2.W).'(3) See supplementary material for specifis.
Understanding COVID-19 vaccine acceptability among clients and staff of homeless shelters can inform public health efforts focused on communicating with and educating this population about COVID-19 vaccines and thus improve vaccine uptake. The objective of this study was to assess COVID-19 vaccine acceptability and uptake among people in homeless shelters in Detroit, Michigan. A cross-sectional study was conducted from February 9 to 23, 2021. Seventeen homeless shelters were surveyed: seven male-only, three male/female, and seven women and family shelters. All clients and staff aged ≥18 years and able to complete a verbal survey in English or with a translator were eligible to participate; of the 168 individuals approached, 26 declined, leaving a total sample of 106 clients and 36 staff participating in the study. The median client and staff ages were 44 and 54 years, respectively. Most participants (>80%) identified as non-Hispanic Black or African American. Sixty-one (57.5%) clients and 27 (75.5%) staff had already received or planned to receive a COVID-19 vaccination. Twelve (11.3%) clients and four (11.1%) staff were unsure, and 33 (31.1%) clients and five (13.9%) staff did not plan to get vaccinated. Reasons for hesitancy were concerns over side effects (29 clients [64.4%] and seven staff [77.8%]) and unknown long-term health impacts (26 clients [57.8%] and six staff [66.7%]). More than half of the clients had already received or planned to receive the vaccine. Continuing efforts such as vaccine education for hesitant clients and staff and having accessible vaccine events for this population may improve acceptability and uptake.
This paper discusses the evaluation of a facility that produces high quality engineered nanomaterials. These ENMs consist of various metals including iron, nickel, silver, manganese, and palladium. Although occupational exposure levels are not available for these metals, studies have indicated that it may be prudent to keep exposures to the nano-scale metal as low as possible. Previous In vitro studies indicated that in comparison with a material’s larger (parent) counterpart, nanomaterials can move easily through cell membranes and can cause severe toxic effects on human health. The in vitro studies showed that the toxicological effects specific to exposure to nanoscale nickel oxide and nickel have been found to be more inflammatory and toxic than larger-sized nickel particles and can decrease cell metabolic activity, arrest the G2-M cell cycle, and increase cell death. An in vitro study on exposure to iron nanoparticles indicated that the reactive oxygen species produced by exposure may increase cell permeability thereby increasing the potential for vascular movement. Much of the data available on palladium focus on dermal or ingestion exposure; the chronic effects are not well understood. Given the available limited data on the metals evaluated, caution is warranted. One should always keep in mind that the current OELs were not developed specifically for nanoscale particles. With limited data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source, to limit the potential for exposure. Evidence suggests that in general some nanomaterials can be more toxic than their macro-scale counterparts, and therefore caution is warranted. It appears that the personal protective equipment utilized by the employee was appropriate for this type of operation. It should be noted that the use of respiratory protection should not be used as sole protection for any worker, but providing a fit-tested respirator will serve to further decrease the potential for exposure. Instead, it is recommended to control the dispersion of product at the source using local exhaust ventilation, ventilated containment, or fume hoods. Data obtained from the direct reading instruments suggest that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentrations decreased, creating a concentration gradient with respect to the reactor.
The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.