A high yield (>36 wt %) method has been developed of preparing monolayered tungsten dichalcogenide (WS2) quantum dots (QDs) with lateral size ∼8-15 nm from multilayered WS2 flakes. The monolayered WS2 QDs are, like monolayered WS2 sheets, direct semiconductors despite the flake precursors being an indirect semiconductor. However, the QDs have a significantly larger direct transition energy (3.16 eV) compared to the sheets (2.1 eV) and enhanced photoluminescence (PL; quantum yield ∼4%) in the blue-green spectral region at room temperature. UV/vis measurements reveal a giant spin-valley coupling of the monolayered WS2 QDs at around 570 meV, which is larger than that of monolayered WS2 sheets (∼400 meV). This spin-valley coupling was further confirmed by PL as direct transitions from the conduction band minimum to split valence band energy levels, leading to multiple luminescence peaks centered at around 369 (3.36 eV) and 461 nm (2.69 eV, also contributed by a new defect level). The discovery of giant spin-valley coupling and the strong luminescence of the monolayered WS2 QDs make them potentially of interests for the applications in semiconductor-based spintronics, conceptual valley-based electronics, quantum information technology and optoelectronic devices. However, we also demonstrate that the fabricated monolayered WS2 QDs can be a nontoxic fluorescent label for high contrast bioimaging application.
Monolayered boron nitride (BN) quantum dots (QDs; lateral size ≈10 nm) are fabricated using a novel method. Unlike monolayered BN sheets, these BN QDs exhibit blue-green luminescence due to defects formed during preparation. This optical behavior adds significant functionality to a material that is already receiving much attention. It is further shown that the QDs are nontoxic to biological cells and well suited to bio-imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.