There is consensus among both the research and industrial communities, and even the general public, that additive manufacturing (AM) processes capable o f processing metal lic materials are a set o f game changing technologies that offer unique capabilities with tremendous application potential that cannot be matched by traditional manufacturing technologies. Unfortunately, with all what AM has to offer, the quality and repeatability o f metal parts still hamper significantly their widespread as viable manufacturing proc esses. This is particularly true in industrial sectors with stringent requirements on part quality such as the aerospace and healthcare sectors. One approach to overcome this challenge that has recently been receiving increasing attention is process monitoring and real-time process control to enhance part quality and repeatability. This has been addressed by numerous research efforts in the past decade and continues to be identified as a high priority research goal. In this review paper, we fill an important gap in the liter ature represented by the absence o f one single source that comprehensively describes what has been achieved and provides insight on what still needs to be achieved in the field o f process monitoring and control fo r metal-based AM processes.
Accurate predictions of equipment failure times are necessary to improve replacement and spare parts inventory decisions. Most of the existing decision models focus on using population-specific reliability characteristics, such as failure time distributions, to develop decision-making strategies. Since these distributions are unaffected by the underlying physical degradation processes, they do not distinguish between the different degradation characteristics of individual components of the population. This results in less accurate failure predictability and hence less accurate replacement and inventory decisions. In this paper, we develop a sensor-driven decision model for component replacement and spare parts inventory. We integrate a degradation modeling framework for computing remaining life distributions using condition-based in situ sensor data with existing replacement and inventory decision models. This enables the dynamic updating of replacement and inventory decisions based on the physical condition of the equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.