Background: Chemotherapy is one of the common approaches in treatment of cancers, especially leukemia. However, drug resistance phenomena reduce the likelihood of treatment success. Resveratrol is a herbal compound which through complicated processes makes some selected cells sensitive to treatment and induction of apoptosis. In the present study, the effects of resveratrol on the expression of miR 15a and miR16-1 and apoptosis in the CCRF-CEM cell line were investigated. Materials and Methods: The CCRF-CEM cell line was cultured under standard conditions and changes in miR 15a and miR 16-1 expression were analyzed by real time-PCR technique, with attention to reveratrol dose and time dependence. Also, apoptosis is evaluated by flow cytometry using annexin V and PI. Results: CCRF-CEM cells underwent dose-dependent apoptotic cell death in response to resveratrol. MiR 15a and miR 16-1 expression was up-regulated after 24 and 48 hours resveratrol treatment (p<0.05). Conclusions: The results of our study indicate that resveratrol induces apoptosis in a time and dosedependent manner in CCRF-CEM cells. Also, increased expression level of miR 16-1 and miR 15a by means of resveratrol in CCRF-CEM cells might have a role in apoptosis induction and predisposition. According to our results resveratrol can be regarded as a dietary supplement to improve efficacy of anti-leukemia therapies.
Multidrug resistance in tumor cells is still a big challenge in cancer treatment. Therefore, identification ofsafe and effective multidrug resistance-reversing compounds with minimal side effects is an important approach in cancer treatment. Here, we investigated the role and potential mechanisms of peroxisome proliferator-activated receptor γ in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. The effect of doxorubicin on cell viability following treatment with balaglitazone, a peroxisome proliferator-activated receptor γ agonist, was evaluated using trypan blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Rhodamine123 assay was used to determine the activity of two common drug efflux membrane transporters P-glycoprotein and multidrug resistance protein-1. P-glycoprotein, multidrug resistance protein-1, and phosphatase and tensin homolog deleted on chromosome 10 messenger RNA/protein expression levels were measured by quantitative reverse transcription polymerase chain reaction and western blot analyses. Annexin V/fluorescein isothiocyanate assay was also employed to investigate apoptosis. We showed that balaglitazone considerably enhanced the cytotoxicity of doxorubicin. Balaglitazone also significantly downregulated P-glycoprotein expression and activity in K562/DOX cells and reduced multidrug resistance through elevation of intracellular doxorubicin in cells. Furthermore, upon balaglitazone treatment, phosphatase and tensin homolog deleted on chromosome 10 expression could be restored in K562/DOX cells in a peroxisome proliferatoractivated receptor γ-dependent manner. We concluded that peroxisome proliferator-activated receptor γ agonist, balaglitazone, could reverse multidrug resistance by inducing phosphatase and tensin homolog deleted on chromosome 10 and peroxisome proliferator-activated receptor/ phosphatase and tensin homolog deleted on chromosome 10 signaling pathway. These findings suggest that targeting peroxisome proliferator-activated receptor γ might serve as an effective approach for circumventing multidrug resistance in chemotherapy of cancerous patients.
prednisolone-induced apoptosis might be mediated by up-regulation of these 2 miRNAs in CCRF-CEM cells.
BackgroundThe numerous side effects and chemo-resistance of conventional chemical drugs in the treatment of malignancies have led to consideration of the anti-cancer properties of natural products. In the present study, we aimed to explore the apoptotic effect of two natural components, resveratrol and prednisolone, on the T acute lymphoblastic leukemia (ALL) cell line, CCRF-CEM. Our findings suggested the incorporation of these natural agents into drug regimens to treat patients with ALL.MethodsIn this study, we investigated the effect of different doses of resveratrol (15, 50 and 100 µM) and prednisolone (700 µM) on BAX (apoptosis promoter) and BCL2 (apoptosis inhibitor) expressions following 24 and 48 hours of treatment on CCRF-CEM cells, using real-time PCR, and on apoptosis induction using flow cytometry.ResultsThe results showed a time- and dose-dependent increase in BAX expression and a decrease in BCL2 expression. Apoptosis was induced in CCRF-CEM cells treated with resveratrol and prednisolone for 24 and 48 hours. Combined resveratrol and prednisolone treatment showed synergistic effects on the overexpression of BAX and the downregulation of BCL2. The drug combination had a greater influence on apoptosis induction compared with either drug administered alone after 48 hours of treatment.ConclusionThe results of this study suggested that resveratrol exhibited a remarkable efficacy to improve the influence of glucocorticoids drugs, especially prednisolone, to induce apoptosis in the CCRF-CEM cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.