Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. Current agents for AD are employed for symptomatic therapy and insufficient to cure. We consider that this is quite necessary for AD treatment and have investigated axon/synapse formation-promoting activity. The aim of this study is to investigate the effects of Kamikihi-to [KKT; traditional Japanese (Kampo) medicine] on memory deficits in an AD model, 5XFAD. KKT (200 mg/kg, p.o.) was administered for 15 days to 5XFAD mice. Object recognition memory was tested in vehicle-treated wild-type and 5XFAD mice and KKT-treated 5XFAD mice. KKT-treated 5XFAD mice showed significant improvement of object recognition memory. KKT treatment significantly reduced the number of amyloid plaques in the frontal cortex and hippocampus. Only inside of amyloid plaques were abnormal structures such as bulb-like axons and swollen presynaptic boutons observed. These degenerated axons and presynaptic terminals were significantly reduced by KKT treatment in the frontal cortex. In primary cortical neurons, KKT treatment significantly increased axon length when applied after Aβ(25-35)-induced axonal atrophy had progressed. In conclusion, KKT improved object recognition memory deficit in an AD model 5XFAD mice. Restoration of degenerated axons and synapses may be associated with the memory recovery by KKT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.