We report the enrichment of and immune responses mediated by genes expressed by Mycobacterium tuberculosis inside macrophages as a function of time. Results indicate that M. tuberculosis expresses different genes at different times postinfection. Genes expressed early (day 1) following infection enhance M. tuberculosis-mediated activation of dendritic cells (DCs), whereas genes expressed later (day 5) in the infection prevent DC activation. However, all genes downmodulated MHC class I and II expression on infected macrophages, thus compromising their ability to interact with Ag-specific T cells. Day-1 and -5 genes downmodulated proinflammatory cytokine production from DCs, thus impairing signal 3 during DC–T cell cognate interactions. Consequently, T cells activated by Ag-experienced DCs secreted low levels of IFN-γ and IL-17 but maintained high IL-10 secretion, thus inducing suppressor responses. Further characterization revealed that day-1 and -5 genes increased TLR2-induced expression of suppressors of cytokine signaling 1 from DCs and downmodulated IL-12 expression. In addition, day-1 and -5 genes prevented the generation of reactive oxygen species in DCs. In contrast, although day-5 genes increased TLR2-mediated suppressors of cytokine signaling 1 expression in macrophages, day-1 genes downmodulated the expression of inducible NO synthase 2. Similar downregulation of immune responses was observed upon exogenous stimulation with day-1 or -5 Ags. Finally, day-1 and -5 genes promoted enhanced survival of M. tuberculosis inside DCs and macrophages. These results indicate that M. tuberculosis genes, expressed inside infected macrophages as a function of time, collectively suppress protective immune responses by using multiple and complementary mechanisms.
The biological processes regulated by the essential response regulator MtrA and the growth conditions promoting its activation in Mycobacterium tuberculosis, a slow grower and pathogen, are largely unknown. Here, using a gain-of-function mutant, MtrAY 102C, which functions in the absence of the cognate MtrB sensor kinase, we show that the MtrA regulon includes several genes involved in the processes of cell division and cell wall metabolism. The expression of selected MtrA targets and intracellular MtrA levels were compromised under replication arrest induced by genetic manipulation and under stress conditions caused by toxic radicals. The loss of the mtrA gene in M. smegmatis, a rapid grower and non-pathogen, produced filamentous cells with branches and bulges, indicating defects in cell division and cell shape. The ΔmtrA mutant was sensitized to rifampicin and vancomycin and became more resistant to isoniazid, the first line antituberculosis drug. Our data are consistent with the proposal that MtrA controls the optimal cell division, cell wall integrity, and susceptibility to some antimycobacterial drugs.
Malaria is a global disease and a major health problem. The control of malaria is a daunting task due to the increasing drug resistance. Therefore, there is an urgent need to identify and characterize novel parasite specific drug targets. In the present study we report the biochemical characterization of parasite specific UvrD helicase from Plasmodium falciparum. The N-terminal fragment (PfUDN) containing UvrD helicase domain, which consists of helicase motifs Q, Ia–Id, II, III and most of motif IV, and the C-terminal fragment (PfUDC1) containing UvrD helicase C terminal domain, consisting of remaining part of motif IV and motifs IVa–IVc and 161 amino acids of intervening sequence between motif IV and V, possess ssDNA-dependent ATPase and DNA helicase activities in vitro. Using immunodepletion assays we show that the ATPase and helicase activities are attributable to PfUDN and PfUDC1 proteins. The helicase activity can utilize the hydrolysis of all the nucleotide and deoxynucleotide triphosphates and the direction of unwinding is 3′ to 5′. The endogenous P. falciparum UvrD contains the characteristic DNA helicase activity. PfUDN interacts with PfMLH (P. falciparum MutL homologue) and modulates the endonuclease activity of PfMLH and PfMLH positively regulates the unwinding activity of PfUDN. We show that PfUvrD is expressed in the nucleus distinctly in the schizont stages of the intraerythrocytic development of the parasite and it colocalizes with PfMLH. These studies will make an important contribution in understanding the nucleic acid transaction in the malaria parasite.
Networks of gene regulation and signaling cascades are fundamental to the pathogenesis of
Mycobacterium tuberculosis
in adapting to the continuously changing intracellular environment in the host.
M. tuberculosis
protein kinase K is a transcription regulator that responds to diverse environmental signals and facilitates stress-induced growth adaptation in culture and during infection. This study identifies multiple signaling interactions of PknK and provides evidence that PknK can change the transcriptional landscape during growth transitions by connecting distinctly different signal transduction and regulatory pathways essential for mycobacterial survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.