In recent years, several novel types of disorder caused by the expansion of triplet repeats in specific genes have been characterized; in the "polyalanine diseases", these expanded repeats result in proteins with aberrantly elongated polyalanine tracts. In this study, we fused expanded polyalanine tracts to yellow fluorescent protein to examine their physical interaction with mitochondria. Tracts containing more than 23 alanine repeats were found to physically associate with mitochondria, strongly suggesting that an interaction between polyalanine tracts and mitochondria is a contributing factor in the pathology of polyalanine diseases. Furthermore, in in vitro experiments, polyalanine tracts induced release of cytochrome c from mitochondria and caspase-3 activation, independently of the mitochondrial permeability transition pore. These results suggest that oligomerized polyalanine tracts might induce the rupture of the mitochondrial membrane, the subsequent release of cytochrome c, and apoptosis. This novel mechanism for polyalanine tract cytotoxicity might be common to the pathogenesis of all polyalanine diseases. Further investigation of this mechanism might aid the development of therapies for these diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.