Metal-polymer-metal hybrid sandwich panels are gaining importance in various industrial applications due to their light weight and damping properties. When compared with composite materials, hybrid materials consisting of separate metal and thermoplastic parts can be recycled more easily. In addition to their applications in civil engineering, the aluminum-low density polyethylene-aluminum (Al-LDPE-Al) sandwich panels yield a potential use as light ballistic protection material. In this study, a standard hybrid panel of 3.2 mm polyethylene filling and 0.4 mm of two aluminum metal sheets was experimentally tested under ballistic impact. A finite element model was constructed via commercial software and validated through shooting experiments with a rifle under real conditions. The finite element model was used to simulate the oblique impact behavior of Al-LDPE-Al sandwich panels as a single layer, as 5 layers stacking and as a single layer equivalent of the stacked 5 layer. Results showed that the oblique impact does not have a significant effect on the single layer panel. Stacked layers, however, and the equivalent single layer of a stacked layer have the highest energy absorption under a 30° hitting angle.
Metal-polymer-metal hybrid sandwich panels are gaining importance in various industrial applications due to their light weight and damping properties. When compared with composite materials, hybrid materials consisting of separate metal and thermoplastic parts can be recycled more easily. In addition to their applications in civil engineering, the aluminum-low density polyethylene-aluminum (Al-LDPE-Al) sandwich panels yield a potential use as light ballistic protection material. In this study, a standard hybrid panel of 3.2 mm polyethylene filling and 0.4 mm of two aluminum metal sheets was experimentally tested under ballistic impact. A finite element model was constructed via commercial software and validated through shooting experiments with a rifle under real conditions. The finite element model was used to simulate the oblique impact behavior of Al-LDPE-Al sandwich panels as a single layer, as 5 layers stacking and as a single layer equivalent of the stacked 5 layer. Results showed that the oblique impact does not have a significant effect on the single layer panel. Stacked layers, however, and the equivalent single layer of a stacked layer have the highest energy absorption under a 30° hitting angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.