Species distribution modelling (SDM) has become an essential method in ecology and conservation. In the absence of survey data, the majority of SDMs are calibrated with opportunistic presence‐only data, incurring substantial sampling bias. We address the challenge of correcting for sampling bias in the data‐sparse situations. We modelled the relative intensity of bat records in their entire range using three modelling algorithms under the point‐process modelling framework (GLMs with subset selection, GLMs fitted with an elastic‐net penalty, and Maxent). To correct for sampling bias, we applied model‐based bias correction by incorporating spatial information on site accessibility or sampling efforts. We evaluated the effect of bias correction on the models’ predictive performance (AUC and TSS), calculated on spatial‐block cross‐validation and a holdout data set. When evaluated with independent, but also sampling‐biased test data, correction for sampling bias led to improved predictions. The predictive performance of the three modelling algorithms was very similar. Elastic‐net models have intermediate performance, with slight advantage for GLMs on cross‐validation and Maxent on hold‐out evaluation. Model‐based bias correction is very useful in data‐sparse situations, where detailed data are not available to apply other bias correction methods. However, bias correction success depends on how well the selected bias variables describe the sources of bias. In this study, accessibility covariates described bias in our data better than the effort covariate, and their use led to larger changes in predictive performance. Objectively evaluating bias correction requires bias‐free presence–absence test data, and without them the real improvement for describing a species’ environmental niche cannot be assessed.
Aim Identifying areas of high species richness is an important goal of conservation biogeography. In this study we compared alternative methods for generating climate‐based estimates of spatial patterns of butterfly and mammal species richness. Location Egypt. Methods Data on the occurrence of butterflies and mammals in Egypt were taken from an electronic database compiled from museum records and the literature. Using Maxent, species distribution models were built with these data and with variables describing climate and habitat. Species richness predictions were made by summing distribution models for individual species and by modelling observed species richness directly using the same environmental variables. Results Estimates of species richness from both methods correlated positively with each other and with observed species richness. Protected areas had higher species richness (both predicted and actual) than unprotected areas. Main conclusions Our results suggest that climate‐based models of species richness could provide a rapid method for selecting potential areas for protection and thus have important implications for biodiversity conservation.
Species distribution modeling (SDM) is an essential method in ecology and conservation. SDMs are often calibrated within one country's borders, typically along a limited environmental gradient with biased and incomplete data, making the quality of these models questionable. In this study, we evaluated how adequate are national presence‐only data for calibrating regional SDMs. We trained SDMs for Egyptian bat species at two different scales: only within Egypt and at a species‐specific global extent. We used two modeling algorithms: Maxent and elastic net, both under the point‐process modeling framework. For each modeling algorithm, we measured the congruence of the predictions of global and regional models for Egypt, assuming that the lower the congruence, the lower the appropriateness of the Egyptian dataset to describe the species' niche. We inspected the effect of incorporating predictions from global models as additional predictor (“prior”) to regional models, and quantified the improvement in terms of AUC and the congruence between regional models run with and without priors. Moreover, we analyzed predictive performance improvements after correction for sampling bias at both scales. On average, predictions from global and regional models in Egypt only weakly concur. Collectively, the use of priors did not lead to much improvement: similar AUC and high congruence between regional models calibrated with and without priors. Correction for sampling bias led to higher model performance, whatever prior used, making the use of priors less pronounced. Under biased and incomplete sampling, the use of global bats data did not improve regional model performance. Without enough bias‐free regional data, we cannot objectively identify the actual improvement of regional models after incorporating information from the global niche. However, we still believe in great potential for global model predictions to guide future surveys and improve regional sampling in data‐poor regions.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Species distribution models are a very popular tool in ecology and biogeography and have great potential to help direct conservation efforts. Models are traditionally tested by using half the original species records to build the model and half to evaluate it. However, this can lead to overly optimistic estimates of model accuracy, particularly when there are systematic biases in the data. It is better to evaluate models using independent data. This study used independent species records from a new to survey to provide a more rigorous evaluation of distribution‐model accuracy. Distribution models were built for reptile, amphibian, butterfly and mammal species. The accuracy of these models was evaluated using the traditional approach of partitioning the original species records into model‐building and model‐evaluating datasets, and using independent records collected during a new field survey of 21 previously unvisited sites in diverse habitat types. We tested whether variation in distribution‐model accuracy among species could be explained by species detectability, range size, number of records used to build the models, and body size. Estimates of accuracy derived using the new species records correlated positively with estimates generated using the traditional data‐partitioning approach, but were on average 22% lower. Model accuracy was negatively related to range size and number of records used to build the models, and positively related to the body size of butterflies. There was no clear relationship between species detectability and model accuracy. The field data generally validated the species distribution models. However, there was considerable variation in model accuracy among species, some of which could be explained by the characteristics of species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.