Traditional dietary recommendations for patients with chronic kidney disease (CKD) focus on the quantity of nutrients consumed. Without appropriate dietary counselling, these restrictions can result in a low intake of fruits and vegetables and a lack of diversity in the diet. Plant nutrients and plant-based diets could have beneficial effects in patients with CKD: increased fibre intake shifts the gut microbiota towards reduced production of uraemic toxins; plant fats, particularly olive oil, have anti-atherogenic effects; plant anions might mitigate metabolic acidosis and slow CKD progression; and as plant phosphorus has a lower bioavailability than animal phosphorus, plant-based diets might enable better control of hyperphosphataemia. Current evidence suggests that promoting the adoption of plant-based diets has few risks but potential benefits for the primary prevention of CKD, as well as for delaying progression in patients with CKD G3-5. These diets might also help to manage and prevent some of the symptoms and metabolic complications of CKD. We suggest that restriction of plant foods as a strategy to prevent hyperkalaemia or undernutrition should be individualized to avoid depriving patients with CKD of these potential beneficial effects of plant-based diets. However, research is needed to address knowledge gaps, particularly regarding the relevance and extent of diet-induced hyperkalaemia in patients undergoing dialysis.
Coronavirus disease 2019 (COVID-19) is a contagious life-threatening infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent findings indicate an increased risk for acute kidney injury during COVID-19 infection. The pathophysiologic mechanisms leading to acute kidney injury in COVID-19 infection are unclear but may include direct cytopathic effects of the virus on kidney tubular and endothelial cells, indirect damage caused by virus-induced cytokine release, and kidney hypoperfusion due to a restrictive fluid strategy. In this report of 2 cases, we propose an additional pathophysiologic mechanism. We describe 2 cases in which patients with COVID-19 infection developed a decrease in kidney function due to kidney infarction. These patients did not have atrial fibrillation. One of these patients was treated with therapeutic doses of low-molecular-weight heparin, after which no further deterioration in kidney function was observed. Our findings implicate that the differential diagnosis of acute kidney injury in COVID-19-infected patients should include kidney infarction, which may have important preventive and therapeutic implications. Complete author and article information provided before references.
To accommodate the loss of the plethora of functions of the kidneys, patients with chronic kidney disease require many dietary adjustments, including restrictions on the intake of protein, phosphorus, sodium and potassium. Plant-based foods are increasingly recommended as these foods contain smaller amounts of saturated fatty acids, protein and absorbable phosphorus than meat, generate less acid and are rich in fibers, polyunsaturated fatty acids, magnesium and potassium. Unfortunately, these dietary recommendations cannot prevent the occurrence of many symptoms, which typically include fatigue, impaired cognition, myalgia, muscle weakness, and muscle wasting. One threat coming with the recommendation of low-protein diets in patients with non-dialysis-dependent chronic kidney disease (CKD) and with high-protein diets in patients with dialysis-dependent CKD, particularly with current recommendations towards proteins coming from plant-based sources, is that of creatine deficiency. Creatine is an essential contributor in cellular energy homeostasis, yet on a daily basis 1.6–1.7% of the total creatine pool is degraded. As the average omnivorous diet cannot fully compensate for these losses, the endogenous synthesis of creatine is required for continuous replenishment. Endogenous creatine synthesis involves two enzymatic steps, of which the first step is a metabolic function of the kidney facilitated by the enzyme arginine:glycine amidinotransferase (AGAT). Recent findings strongly suggest that the capacity of renal AGAT, and thus endogenous creatine production, progressively decreases with the increasing degree of CKD, to become absent or virtually absent in dialysis patients. We hypothesize that with increasing degree of CKD, creatine coming from meat and dairy in food increasingly becomes an essential nutrient. This phenomenon will likely be present in patients with CKD stages 3, 4 and 5, but will likely be most pronouncedly present in patients with dialysis-dependent CKD, because of the combination of lowest endogenous production of creatine and unopposed losses of creatine into the dialysate. It is likely that these increased demands for dietary creatine are not sufficiently met. The result of which, may be a creatine deficiency with important contributions to the sarcopenia, fatigue, impaired quality of life, impaired cognition, and premature mortality seen in CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.