To ensure the stability of the bottom under the floating bridges according to the worst conditions, our study aims to determine the height and width and bearing the floating bridge to ensure the safety of origin with a high security factor. Our study determines the amount of damage under the floating bridge to be treated by a treatment method. We have used a practical model for a water channel and standard dimensions cut by the floating bridge connecting the two ends of the channel and when studying the erosion under the floating bridges and the possibility of maintaining the floating bridges without damage to the structure and perimeter of the bridge (bridge width, maximum load, bridge height, water depth in the channel with a factor Security This study examines the effect of floating bridges on the bottom by designing a model of a channel with a floating bridge and selecting a variable earth and sand floor. We conducted one hundred and sixty-eight experiments to examine the five variables (water depth in the channel, bridge width, loads on the bridge, soil type) Bottom, flow). We observed the effect of these five variables on topography of the bottom of the floating bridge. Experiments were conducted without a bridge and we observed erosion after laying the bridge, we noticed the erosion and sediment that occurred before and below and after the floating bridge and the effect of the bridge on it. We observed the type of positive and inverse relations between the variables mentioned. We took the loads on the bridge, the width of the bridge, the depth of the water and the drainage with a safety factor, as well as ensuring that the appearance of the channel and maintain the geometry of the channel. We put floating loads on the floating bridge to see a load. We used several models to view the floating bridge and made the water depth in the channel change more than once. We also made three different discharges. Finally, we used two types of soil and we recorded the durability and the worst conditions. The effect discharge, by (100% .64%, 45%) The velocity in the sandy soil changes (100%, 42%,38%) and the velocity in clay soil changes (100%,59%,41%) As well as change the width of the bridge by (100%, 85%,71%)velocity changes by (80%,82%,100%) for sandy soil and the ratio of clay soil to (90%,95%,100%) As well as weight change by (100% ,83%,66%)the rate of velocity in the sandy soil to (100%,78%,61%) also change the velocity in clay soils to (100%,68%,62%) as well as depth change (100%,87%,75%)The speed in the sandy soil changes to (50%,75%,100%) and also changes in clay soils by (71%,78%,100%) Thus, we have a knowledge of the rates of change and the effect of each variable on velocity. Therefore, we can draw up a plan to address erosion and sedimentation in the watercourse. Moreover, identify the expected challenges of (overload, flooding, deterioration, foot and aging as well as the structural strength of the bridge gradually decreasing with the foot.
In the framework of River Bank Filtration "RBF" applicability to confront Iraq water crises, this investigation was originated with the impartial of investigating its sustainability in Iraq. Principally, literature was reviewed in the field of RBF sustainability. 2 previous research results of a sampling campaign in November 2021, were implemented; Adnan et al. (2022a) and (2022b). They verified RBF applicability against Iraqi Standards and validated its applicability against International Standards, respectively. Accordingly, in this research, extensive fieldwork was executed, where site visits were carried out along Tigris River; the available wells were inspected and 5 sampling campaigns were undergone periodically, in December 2021, March 2022, April 2022, July 2022 and August 2022. This was achieved to consider Iraq seasonality. The samples result of the 5 campaigns were analyzed; plotted on graphs and compared to the results of Adnan et al. (2022a). The analyzed results and comparison emphasized the sustainability of RBF applicability in Iraq, which would, most probably contribute in solving its water conflict crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.