Computational pipeline for the accelerated discovery of organic materials with high refractive index via high-throughput screening and machine learning.
<div><i>ChemML</i> is an open machine learning and informatics program suite that is designed to support and advance the data-driven research paradigm that is currently emerging in the chemical and materials domain. <i>ChemML</i> allows its users to perform various data science tasks and execute machine learning workflows that are adapted specifically for the chemical and materials context. Key features are automation, general-purpose utility, versatility, and user-friendliness in order to make the application of modern data science a viable and widely accessible proposition in the broader chemistry and materials community. <i>ChemML</i> is also designed to facilitate methodological innovation, and it is one of the cornerstones of the software ecosystem for data-driven <i>in silico</i> research outlined in our recent publication<sup>1</sup>.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.