We acquired a rapidly preserved human surgical sample from the temporal lobe of the cerebral cortex. We stained a 1 mm3 volume with heavy metals, embedded it in resin, cut more than 5000 slices at ~30 nm and imaged these sections using a high-speed multibeam scanning electron microscope. We used computational methods to render the three-dimensional structure of 50,000 cells, hundreds of millions of neurites and 130 million synaptic connections. The 1.3 petabyte electron microscopy volume, the segmented cells, cell parts, blood vessels, myelin, inhibitory and excitatory synapses, and 100 manually proofread cells are available to peruse online. Despite the incompleteness of the automated segmentation caused by split and merge errors, many interesting features were evident. Glia outnumbered neurons 2:1 and oligodendrocytes were the most common cell type in the volume. The E:I balance of neurons was 69:31%, as was the ratio of excitatory versus inhibitory synapses in the volume. The E:I ratio of synapses was significantly higher on pyramidal neurons than inhibitory interneurons. We found that deep layer excitatory cell types can be classified into subsets based on structural and connectivity differences, that chandelier interneurons not only innervate excitatory neuron initial segments as previously described, but also each others initial segments, and that among the thousands of weak connections established on each neuron, there exist rarer highly powerful axonal inputs that establish multi-synaptic contacts (up to ~20 synapses) with target neurons. Our analysis indicates that these strong inputs are specific, and allow small numbers of axons to have an outsized role in the activity of some of their postsynaptic partners.
Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the assembly of the group 1, 2, and 3 capsules have been described, but those required for G4C assembly remained obscure. We found that enteropathogenic E. coli (EPEC) produces G4C, and we identified an operon containing seven genes, ymcD, ymcC, ymcB, ymcA, yccZ, etp, and etk, which are required for formation of the capsule. The encoded proteins appear to constitute a polysaccharide secretion system. The G4C operon is absent from the genomes of enteroaggregative E. coli and uropathogenic E. coli. E. coli K-12 contains the G4C operon but does not express it, because of the presence of IS1 at its promoter region. In contrast, EPEC, enterohemorrhagic E. coli, and Shigella species possess an intact G4C operon.
Lipopolysaccharide (LPS) is the major structural component of the outer membrane of Gram-negative bacteria and shields them from a variety of host defense factors, including antimicrobial peptides (AMPs). LPS is also recognized by immune cells as a pathogen-associated molecular pattern and stimulates them to secrete pro-inflammatory cytokines that, in extreme cases, lead to a harmful host response known as septic shock. Previous studies have revealed that a few isoforms of the AMP temporin, produced within the same frog specimen, can synergize to overcome bacterial resistance imposed by the physical barrier of LPS. Here we found that temporins can synergize in neutralizing the LPS-induced macrophage activation. Furthermore, the synergism between temporins, to overcome the protective function of LPS as well as its endotoxic effect, depends on the length of the polysaccharide chain of LPS. Importantly, mode of action studies, using spectroscopic and thermodynamic methods, have pointed out different mechanisms underlying the synergism of temporins in antimicrobial and anti-endotoxin activities. To the best of our knowledge, such a dual synergism between isoforms of AMPs from the same species has not been observed before, and it might explain the ability of such amphibians to resist a large repertoire of microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.