We present a joint SO(3)-spectral domain filtering framework using directional spatially localized spherical harmonic transform (DSLSHT), for the estimation and enhancement of random anisotropic signals on the sphere contaminated by random anisotropic noise. We design an optimal filter for filtering the DSLSHT representation of the noise-contaminated signal in the joint SO(3)-spectral domain. The filter is optimal in the sense that the filtered representation in the joint domain is the minimum mean square error estimate of the DSLSHT representation of the underlying (noise-free) source signal. We also derive a least square solution for the estimate of the source signal from the filtered representation in the joint domain. We demonstrate the capability of the proposed filtering framework using the Earth topography map in the presence of anisotropic, zero-mean, uncorrelated Gaussian noise, and compare its performance with the joint spatial-spectral domain filtering framework.
We present a framework for the optimal filtering of spherical signals contaminated by realizations of zero-mean anisotropic noise processes. Filtering is performed in the wavelet domain given by the scale-discretized wavelet transform on the sphere. The proposed filter is optimal in the sense that it minimizes the mean square error between the filtered wavelet representation and wavelet representation of the noise-free signal. We also present a simplified formulation of the filter for the case when azimuthally symmetric wavelet functions are used. We demonstrate the use of the proposed optimal filter for denoising of an Earth topography map in the presence of uncorrelated, zero-mean, White Gaussian noise. The proposed filter is found to be superior to the hard thresholding method, particularly in the high noise regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.