Particle Swarm Optimization (PSO) has become a popular method of feature selection in classification problems, due to its powerful search capability and computational simplicity. Classification problems, such as facial emotion recognition, often involve data sets containing high volumes of features, not all of which are useful for classification. Redundant and irrelevant features have the potential to negatively impact the performance and accuracy of facial emotion recognition systems. The feature selection process identifies the most relevant features to achieve improved classification performance. While the use of PSO as a feature selection method in facial emotion recognition systems has seen some successes, it is still susceptible to the issue of premature convergence. This work presents seven PSO variants which mitigate against the premature convergence problem through the incorporation of three random probability distributions (Cauchy, Gaussian and Lévy). At each iteration of the proposed PSO models, probability distributions are used to increase search diversity and reduce the number of redundant features used for classification. The seven PSO variants presented in this study have demonstrated positive results when tested on real world data sets, outperforming the standard PSO model and other related work within the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.