Thermal imaging is an important source of information for geographic information systems (GIS) in various aspects of environmental research. This work contains a variety of experiences related to the use of the Yuneec E10T thermal imaging camera with a 320 × 240 pixel matrix and 4.3 mm focal length dedicated to working with the Yuneec H520 UAV in obtaining data on the natural environment. Unfortunately, as a commercial product, the camera is available without radiometric characteristics. Using the heated bed of the Omni3d Factory 1.0 printer, radiometric calibration was performed in the range of 18–100 °C (high sensitivity range–high gain settings of the camera). The stability of the thermal camera operation was assessed using several sets of a large number of photos, acquired over three areas in the form of aerial blocks composed of parallel rows with a specific sidelap and longitudinal coverage. For these image sets, statistical parameters of thermal images such as the mean, minimum and maximum were calculated and then analyzed according to the order of registration. Analysis of photos taken every 10 m in vertical profiles up to 120 m above ground level (AGL) were also performed to show the changes in image temperature established within the reference surface. Using the established radiometric calibration, it was found that the camera maintains linearity between the observed temperature and the measured brightness temperature in the form of a digital number (DN). It was also found that the camera is sometimes unstable after being turned on, which indicates the necessity of adjusting the device’s operating conditions to external conditions for several minutes or taking photos over an area larger than the region of interest.
Measurement of water content in forest habitats is considered essential in ecological research on forests, climate change, or forest management. In the traditional forest habitat classification, two systems of habitat conditions analysis are found: single factor and multifactor methods. Both are laborious and therefore costly. Remote sensing methods provide a low-cost alternative. The aim of the presented study was to find the relationship between the spectral indices obtained from satellite images and the forest habitats moisture indices used traditionally in the Polish forest habitats classification. The scientific hypothesis of the research is as follows: it is possible to assess the variation in the humidity of forest habitats on the basis of spectral indices. Using advanced geographic information system (GIS) technology, 923 research plots were tested, where habitat studies performed with the traditional methods were compared with the analysis of 191 spectral indices calculated for Sentinel-2 image data. The normalized difference vegetation index (NDVI) has proved to be the most useful to the assessing of moisture of forest habitats. The ranking of the most correlated indices was calculated as Eintg—the product of the absolute value of the slope and the mean square error complement, and for the top five indices was as follows: NDVI = 0.248619, EXG = 0.242112, OSAVI = 0.239412, DSWI-4 = 0.238784, and RDVI = 0.236995. The results also highlight the impact of water reservoirs on the humidity and trophicity of forest habitats, showing a decrease in the fertility of habitats with an increase in distance from the water reservoir. The results of the study can be used to preparing maps of the diversity of forest types, especially in hard-to-reach places, as well as to assess changes in the moisture status of habitats, which may be useful, for example, in the assessment of the fire risk of forest habitats. We have proved that NDVI can be used in applications for which it was not originally designed.
This article concerns the use of remote sensing methods to assess the potential of tourism and recreation of lakes by using unmanned aerial vehicles as a tool that offers new measurement possibilities in such difficult areas to research as river and lake systems. For the purpose of the study, air surveys over three lakes used for tourism and recreation purposes were planned and carried out. These were the following lakes: Swarzędzkie, Wolsztyńskie and Zbąszyńskie located in western Poland. The photos were taken with a RGB and a multispectral cameras. On the basis of calculated orthophotomaps and digital surface models, anthropogenic and natural values were assessed. The examples of the research show the versatile possibilities of using drones dependent on the type sensor used. Remote sensing performed from the deck of an unmanned aircraft is widely used in the study of lakes and is an alternative to existing land and water research methods.
The use of unmanned aerial vehicles is becoming more and more popular for making high-altitude and orthophotomap models. In this process, series of images are taken at specific intervals, usually lasting several seconds. This article demonstrates the ability to make models and orthophotomaps from dynamic images – video recorded from UAV. The best mutual coverage of photographs was indicated (95–96%) and the photogrammetric process for joining images was presented, through the creation of a point cloud to obtain a digital terrain model and the orotfotomap. The data was processed in 150 different variants and the usefulness of this method was demonstrated. Problems and errors that may occur during the processing of recorded image data are also described.
The mixing of river and lake waters is important for the functioning of a reservoir, especially in the case of shallow polymictic reservoirs such as Lake Swarzędzkie. The extent of this mixing depends largely on the river flow rate. In lakes, which rivers with low flow values flow through, it should be expected that the flow currents only reach the narrow zone adjacent to the mouth of the river to the lake. The water of rivers generally has different chemical compositions and physicochemical parameters in relation to lake water. Therefore, to determine the range of the river in the lake and characterize the water mixing, measurements of temperature, electrolytic conductivity, and the concentrations of selected chemical elements were made in the estuary zone and at other points located on the lake and on the river near the tributary. In addition, the values and directions of horizontal currents were determined, and thermal photos were taken from a low-altitude ceiling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.