Compressive sensing of 2D signals involves three fundamental steps: sparse representation, linear measurement matrix, and recovery of the signal. This paper focuses on analyzing the efficiency of various measurement matrices for compressive sensing of medical images based on theoretical predictive coding. During encoding, the prediction is efficiently chosen by four directional predictive modes for block-based compressive sensing measurements. In this work, Gaussian, Bernoulli, Laplace, Logistic, and Cauchy random matrices are used as the measurement matrices. While decoding, the same optimal prediction is de-quantized. Peak-signal-to-noise ratio and sparsity are used for evaluating the performance of measurement matrices. The experimental result shows that the spatially directional predictive coding (SDPC) with Laplace measurement matrices performs better compared to scalar quantization (SQ) and differential pulse code modulation (DPCM) methods. The results indicate that the Laplace measurement matrix is the most suitable in compressive sensing of medical images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.