Neonatal rat primary myocardial cells were subjected to heat stress in vitro, as a model for investigating the distribution and expression of Hsp27 and αB-crystallin. After exposure to heat stress at 42°C for different durations, the activities of enzymes expressed during cell damage increased in the supernatant of the heat-stressed myocardial cells from 10 min, and the pathological lesions were characterized by karyopyknosis and acute degeneration. Thus, cell damage was induced at the onset of heat stress. Immunofluorescence analysis showed stronger positive signals for both Hsp27 and αB-crystallin from 10 min to 240 min of exposure compared to the control cells. According to the Western blotting results, during the 480 min of heat stress, no significant variation was found in Hsp27 and αB-crystallin expression; however, significant differences were found in the induction of their corresponding mRNAs. The expression of these small heat shock proteins (sHsps) was probably delayed or overtaxed due to the rapid consumption of sHsps in myocardial cells at the onset of heat stress. Our findings indicate that Hsp27 and αB-crystallin do play a role in the response of cardiac cells to heat stress, but the details of their function remain to be investigated.
Relationships between αB-crystallin expression patterns and pathological changes of myocardial cells after heat stress were examined in vitro and in vivo in this study using the H9C2 cell line and Sprague-Dawley rats, respectively. Histopathological lesions, characterized by acute degeneration, karyopyknosis and loss of a defined nucleus, became more severe in rat hearts over the course of heat stress treatment from 20 min to 100 min. The expression of αB-crystallin in rat hearts showed a significant decrease (P<0.05) throughout the heat stress treatment period, except at the 40 min time point. Likewise, decreased αB-crystallin expression was also observed in the H9C2 cell line exposed to a high temperature in vitro, although its expression recovered to normal levels at later time points (80 and 100 min) and the cellular damage was less severe. The results suggest that αB-crystallin is mobilized early after exposure to a high temperature to interact with damaged proteins but that the myocardial cells cannot produce sufficient αB-crystallin for protection against heat stress. Lower αB-crystallin expression levels were accompanied by obvious cell/tissue damage, suggesting that the abundance of this protein is associated with protective effects in myocardial cells in vitro and in vivo. Thus, αB-crystallin is a potential biomarker of heat stress.
The aim of the present study was to investigate the association between heat shock protein (Hsp) 70 expression kinetics and heat stress‑induced damage to rat myocardial cells in vitro and in vivo. The results showed that the activity of heart injury‑associated enzymes, including aspartate aminotransferase and creatine kinase, significantly increased and myocardial cells developed acute histopathological lesions; this therefore suggested that heat stress altered the integrity of myocardial cells in vitro and in vivo. Levels of Hsp70 in vitro decreased following the initiation of heat stress and then steadily increased until heat stress ceased at 100 min; however, in vivo studies demonstrated a gradual increase in Hsp70 levels in the heart cells of rats from the initiation of heat stress, followed by a sharp decline at 100 min. These results indicated that the cells sustained different degrees of injury in vivo compared with those sustained in vitro, this may be due to different regulatory mechanisms in the two environments. Intracytoplasmic Hsp70 signaling was significantly reduced at 60 min in vitro, compared with that of the in vivo study, indicating that Hsp70 consumption may have exceeded its production prior to 60 min of heat stress, and following 60 min the cells produced sufficient Hsp70 protein for their protection against heat stress. Hsp70‑positive signals in the cytoplasm of heart cells in vivo were more prominent in the intact areas compared with those of the degenerated areas and the density of Hsp70‑positive signals was significantly reduced following 60 min of heat stress. In conclusion, comprehensive comparisons of enzymes, cell morphology and Hsp70 levels indicated that decreased levels of Hsp70 were associated with the reduced protective effect on myocardial cells in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.