We present analysis of two lowest-order hybridizable discontinuous Galerkin methods for the Stokes problem, while making only minimal regularity assumptions on the exact solution. The methods under consideration have previously been shown to produce H(div)-conforming and divergence-free approximate velocities. Using these properties, we derive a priori error estimates for the velocity that are independent of the pressure. These error estimates, which assume only H 1+s -regularity of the exact velocity fields for any s ∈ [0, 1], are optimal in a discrete energy norm. Error estimates for the velocity and pressure in the L 2 -norm are also derived in this minimal regularity setting. Our theoretical findings are supported by numerical computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.