The efficacy of deep learning has resulted in its use in a growing number of applications. The Volta graphics processor unit (GPU) architecture from NVIDIA introduced a specialized functional unit, the "tensor core", that helps meet the growing demand for higher performance for deep learning. In this paper we study the design of the tensor cores in NVIDIA's Volta and Turing architectures. We further propose an architectural model for the tensor cores in Volta. When implemented a GPU simulator, GPGPU-Sim, our tensor core model achieves 99.6% correlation versus an NVIDIA Titan V GPU in terms of average instructions per cycle when running tensor core enabled GEMM workloads. We also describe support added to enable GPGPU-Sim to run CUTLASS, an opensource CUDA C++ template library providing customizable GEMM templates that utilize tensor cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.