This paper studies the behaviour of circular tunnel subjected to dynamic excitation. Tunnels with three different diameters were selected to perform the shake table test at three different covers. The dry sandy soil was used for testing. The mechanical properties like Young’s modulus and shear modulus of sand was calculated from bender element test. The soil–tunnel interface coefficient was calculated from the direct shear test. The soil pressure generated due to dynamic loading were measured by soil pressure transducers. The actual motion of shake table was captured by hand-held vibration analyser. The tunnel was placed parallel and perpendicular to the direction of shaking. The three-dimensional finite-element model was developed for tunnel with both the orientations. The tunnel was assumed to be elastic. Dry sand was assumed to follow non-linear elasto-plastic material using Mohr–Coulomb failure criterion with non-associated flow rule. The results obtained from numerical analysis are compared with experimental results and are expressed in the form of peak dynamic stresses. The time history and fast Fourier transform results of dynamic stresses are also compared. It shows reasonable agreement with both values. Finally, the seismic design guidelines for tunnel are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.