Classification of stress is imperative especially with regard to automobile drivers since stress level of the driver forms a major factor for accidents. This paper deciphered the classification of stress of automobile drivers using Radial Basis Function Kernel Support Vector Machine (SVM) classifier. The nonlinear separation of features in feature space was deciphered by this kernel trick. Pertinent feature extraction was done from ECG and EMG signals of the driver. Features extracted intuitively showed correlation with stress. This was made solid after getting a high classification accuracy of 100% using SVM using 10 fold cross validation. SVM performance was compared with that of kNN classifier and cross validation showed that kNN had only 81.26, 62.13 and 88.93% of classification rate, sensitivity and specificity where for SVM these parameters were 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.