The nonlinear viscoelastic behavior of the composites of natural rubber filled with surface-modified nanosilica was studied with reference to silica loading. The effect of temperature on the nonlinear viscoelastic behavior has been investigated. It was observed that Payne effect becomes more pronounced at higher silica loading. The filler characteristics such as particle size, specific surface area, and the surface structural features were found to be the key parameters influencing the Payne effect. A nonlinear decrease in storage modulus with increasing strain was observed for unfilled compounds also. The results reveal that the mechanism includes the breakdown of different networks namely the filler-filler network, the weak polymer-filler network, the chemical network, and the entanglement network. The model of variable network density proposed by Maier and Goritz has been applied to explain the nonlinear behavior. The activation energy of desorption was calculated and found to be within the range of Van der Waal's interaction energy. The model fits well with the experimental results.
Composites of natural rubber were prepared with TiO 2 and nanosilica. The stress relaxation behavior of the composites under tension was studied with reference to the filler loading and strain level. It was observed that the rate of stress relaxation increases with increase in filler loading. The rate of stress relaxation was found to be higher for silica-filled NR compared to TiO 2 -filled NR. This is due to the high degree of agglomeration in silica compared to titanium dioxide filler. The effect of ageing on the stress decay was also investigated and the rate of stress relaxation was found to decrease after ageing. The experimental curves were fitted with the stretched Kohlrausch equation. From the fitting parameters, the relaxation time and the stretching exponent were estimated in order to understand the mechanism of the relaxation processes in the filled natural rubber composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.