Method of highly sensitive registration of magnetic nanoparticles by their nonlinear magnetization is used in a novel sandwich-type immunoassay for detection of staphylococcal toxins in complex media of virtually any volume, with increasing sensitivity at higher sample volume. The signal is read out from the entire volume of a nontransparent 3D fiber structure employed as a solid phase, which provides large reaction surface, quick reagent mixing, as well as antigen immunofiltration directly in the course of the assay. The method has demonstrated near-linear dose-response curves within a wide range of ~3 decades, while detection of staphylococcal enterotoxin A (SEA) and toxic shock syndrome toxin (TSST) in neat milk without sample preparation. The limits of detection (LOD) as low as 4 and 10 pg/mL for TSST and SEA, respectively, were obtained in 2-h format using 30-mL samples. The second, 25-min format, showed the LOD of 0.1 and 0.3 ng/mL for the same toxins in a 150 μL sample. The developed immunoassay can be applied in food safety control, in vitro diagnostics, and veterinary for a variety of research from express tests in the field to highly sensitive laboratory tests.
Rapid ultrasensitive detection of gastrointestinal pathogens presents a great interest for medical diagnostics and epidemiologic services. Though conventional immunochemical and polymerase chain reaction (PCR)-based methods are sensitive enough for many applications, they usually require several hours for assay, whereas as sensitive but more rapid methods are needed in many practical cases. Here, we report a new microarray-based analytical technique for simultaneous detection of five bacterial toxins: the cholera toxin, the E. coli heat-labile toxin, and three S. aureus toxins (the enterotoxins A and B and the toxic shock syndrome toxin). The assay involves three major steps: electrophoretic collection of toxins on an antibody microarray, labeling of captured antigens with secondary biotinylated antibodies, and detection of biotin labels by scanning the microarray surface with streptavidin-coated magnetic beads in a shear-flow. All the stages are performed in a single flow cell allowing application of electric and magnetic fields as well as optical detection of microarray-bound beads. Replacement of diffusion with a forced transport at all the recognition steps allows one to dramatically decrease both the limit of detection (LOD) and the assay time. We demonstrate here that application of this "active" assay technique to the detection of bacterial toxins in water samples from natural sources and in food samples (milk and meat extracts) allowed one to perform the assay in less than 10 min and to decrease the LOD to 0.1-1 pg/mL for water and to 1 pg/mL for food samples.
Mastitis, a major veterinary problem widespread in many regions, is caused mainly by Staphylococcus spp. However, there is no current reliable information about the role of Staphylococcus aureus and their toxins in the development of mastitis in cows in the territory of the Russian Federation. The aim of this investigation was to determine the profile of exotoxins of S. aureus from cow milk from farms of Central Russia. A total of 60 isolates of S. aureus were obtained from milk samples of cows with the subclinical form of mastitis. The exotoxin genes were identified using 2 types of PCR assays. The diversity of enterotoxin genes was studied by multiplex PCR. The percentage occurrence of enterotoxin genes was as follows: sea, 53.3%; seb, 3.3%; sec, 50%; sed, 4%; see, 46.6%; seg, 70%; sei, 10%; selp, 3.3%; and tsst1, 1.6%. The seh gene was not detected. The genes of pore-forming toxins and phenol-soluble modulins were identified by singleplex PCR and consisted of the following: hlA, 70%; lucS, 46.6%; psmA, 81.6%; psmB, 95%; and hld, 78.3%. The most abundant genes were psm (psmB, 95%), which codes for pore-forming toxins, and seg (70%), which codes for enterotoxins. The production of some enterotoxins in bacterial culture medium was detected by ELISA. The level of toxin production was near 1 ng/mL for SEA, SEE, SEG, SEI, SELP, and TSST-1 and reached a maximal level of 18 ng/mL for SEE. In the present work, we show that subclinical mastitis in cows is associated with S. aureus in the central region of the Russian Federation. Most of the isolates containing enterotoxin genes also had cytotoxin genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.