A proton beam delivery system on a gantry with continuous uniform scanning and dose layer stacking at the Midwest Proton Radiotherapy Institute has been commissioned and accepted for clinical use. This paper was motivated by a lack of guidance on the testing and characterization for clinical uniform scanning systems. As such, it describes how these tasks were performed with a uniform scanning beam delivery system. This paper reports the methods used and important dosimetric characteristics of radiation fields produced by the system. The commissioning data include the transverse and longitudinal dose distributions, penumbra, and absolute dose values. Using a 208 MeV cyclotron's proton beam, the system provides field sizes up to 20 and 30 cm in diameter for proton ranges in water up to 27 and 20 cm, respectively. The dose layer stacking method allows for the flexible construction of spread-out Bragg peaks with uniform modulation of up to 15 cm in water, at typical dose rates of 1 -3 Gy/ min. For measuring relative dose distributions, multielement ion chamber arrays, small-volume ion chambers, and radiographic films were employed. Measurements during the clinical commissioning of the system have shown that the lateral and longitudinal dose uniformity of 2.5% or better can be achieved for all clinically important field sizes and ranges. The measured transverse penumbra widths offer a slight improvement in comparison to those achieved with a double scattering beam spreading technique at the facility. Absolute dose measurements were done using calibrated ion chambers, thermoluminescent and alanine detectors. Dose intercomparisons conducted using various types of detectors traceable to a national standards laboratory indicate that the measured dosimetry data agree with each other within 5%.
The system has performed well, and with great reliability, but there is room for future improvement, especially in ease of use and in reducing the time to get patients into position.
The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.
Large area, shallow fields are well suited to proton therapy. However, due to beam production limitations, such volumes typically require multiple matched fields. This is problematic due to the relatively narrow beam penumbra at shallow depths compared to electron and photon beams. Therefore, highly accurate dose planning and delivery is required. As the dose delivery includes shifting the patient for matched fields, accuracy at the 1–2 millimeter level in patient positioning is also required. This study investigates the dosimetric accuracy of such proton field matching by an innovative robotic patient positioner system (RPPS). The dosimetric comparisons were made between treatment planning system calculations, radiographic film and ionization chamber measurements. The results indicated good agreement amongst the methods and suggest that proton field matching by a RPPS is accurate and efficient.PACS number: 87.55.km
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.