High spatial resolution radio continuum and 6.67‐GHz methanol spectral line data are presented for methanol masers previously detected by Walsh et al. (1997). Methanol maser and/or radio continuum emission is found in 364 cases towards IRAS‐selected regions. For those sources with methanol maser emission, relative positions have been obtained to an accuracy of typically 0.05 arcsec, with absolute positions accurate to around 1 arcsec. Maps of selected sources are provided. The intensity of the maser emission does not seem to depend on the presence of a continuum source. The coincidence of water and methanol maser positions in some regions suggests there is overlap in the requirements for methanol and water maser emission to be observable. However, there is a striking difference between the general proximity of methanol and water masers to both cometary and irregularly shaped ultracompact (UC) H ii regions, indicating that, in other cases, there must be differing environments conducive to stimulating their emission. We show that the methanol maser is most likely present before an observable UC H ii region is formed around a massive star and is quickly destroyed as the UC H ii region evolves. There are 36 out of 97 maser sites that are linearly extended. The hypothesis that the maser emission is found in a circumstellar disc is not inconsistent with these 36 maser sites, but is unlikely. It cannot, however, account for all other maser sites. An alternative model which uses shocks to create the masing spots can more readily reproduce the maser spot distributions.
We have developed a physically self-consistent model of the disk around the nearby 10 Myr old star TW Hya which matches the observed spectral energy distribution and 7mm images of the disk. The model requires both significant dust size evolution and a partially-evacuated inner disk region, as predicted by theories of planet formation. The outer disk, which extends to at least 140 AU in radius, is very optically thick at infrared wavelengths and quite massive (∼ 0.06M ⊙ ) for the relatively advanced age of this T Tauri star. This implies long viscous and dust evolution timescales, although dust must have grown to sizes of order ∼ 1 cm to explain the sub-mm and mm spectral slopes. In contrast, the negligible near-infrared excess emission of this system requires that the disk be optically thin inside ∼ < 4 AU. This inner region cannot be completely evacuated; we need ∼ 0.5 lunar mass of ∼ 1 µm particles remaining to produce the observed 10µm silicate emission. Our model requires a distinct transition in disk properties at ∼ 4 AU, separating the inner and outer disk. The inner edge of the optically-thick outer disk must be heated almost frontally by the star to account for the excess flux at mid-infrared wavelengths. We speculate that this truncation of the outer disk may be the signpost of a developing gap due to the effects of a growing protoplanet; the gap is still presumably evolving because material still resides in it, as indicated by the silicate emission, the molecular hydrogen emission, and by the continued accretion onto the central star (albeit at a much lower rate than typical of younger T Tauri stars). TW Hya thus may become the Rosetta stone for our understanding of the evolution and dissipation of protoplanetary disks.
The conversion of gas into stars is a fundamental process in astrophysics and cosmology. Stars are known to form from the gravitational collapse of dense clumps in interstellar molecular clouds, and it has been proposed that the resulting star formation rate is proportional to either the amount of mass above a threshold gas surface density, or the gas volume density. These star-formation prescriptions appear to hold in nearby molecular clouds in our Milky Way Galaxy's disk as well as in distant galaxies where the star formation rates are often much larger. The inner 500 pc of our Galaxy, the Central Molecular Zone (CMZ), contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of star-formation prescriptions can be tested. Here we show that by several measures, the current star formation rate in the CMZ is an order-ofmagnitude lower than the rates predicted by the currently accepted prescriptions. In particular, the region 1 • < l < 3.5 • , |b| < 0.5 • contains ∼ 10 7 M ⊙ of dense molecular gas -enough to form 1000 Orion-like clusters -but the present-day star formation rate within this gas is only equivalent to that in Orion. In addition to density, another property of molecular clouds, such as the amplitude of turbulent motions, must be included in the star-formation prescription to predict the star formation rate in a given mass of molecular gas.The rate at which gas is converted into stars has been measured in the disks of nearby galaxies. When averaged over hundreds of parsecs, the star-formation rate (SFR) was found to have a power-law dependence on the gas surface-density as described by the Schmidt-Kennicutt (SK) relations (Schmidt 1959;Kennicutt 1998;Kennicutt & Evans 2012). A linear relationship is found between SFR and gas surface-density above a local extinction threshold, AK ∼0.8 magnitudes at a near-infrared wavelength of 2.2 µm, corresponding to a gas column-density of ∼ 7.4 × 10 21
We report the results of a 1.2-mm continuum emission survey toward 131 star-forming complexes suspected of undergoing massive star formation. These regions have previously been identified as harbouring a methanol maser and/or a radio continuum source [ultracompact (UC) H II region], the presence of which is in most instances indicative of massive star formation. The 1.2-mm emission was mapped using the SIMBA instrument on the 15-m Swedish ESO Submillimetre Telescope (SEST). Emission is detected toward all of the methanol maser and UC H II regions targeted, as well as towards 20 others lying within the fields mapped, implying that these objects are associated with cold, deeply embedded objects. Interestingly, there are also 20 methanol maser sites and nine UC H II regions within the fields mapped which are devoid of millimetre continuum emission.In addition to the maser and UC H II regions detected, we have also identified 253 other sources within the SIMBA maps. All of these (253) are new sources, detected solely from their millimetre continuum emission. These 'mm-only' cores are devoid of the traditional indicators of massive star formation, (i.e. methanol/OH maser, UC H II regions or IRAS point sources). At least 45 per cent of these mm-only cores are also without mid-infrared Mid-course Space Experiment (MSX) emission. The 'mm-only' core may be an entirely new class of source that represents an earlier stage in the evolution of massive stars, prior to the onset of methanol maser emission. Or, they may harbour protoclusters which do not contain any high-mass stars (i.e. below the H II region limit).In total, 404 sources are detected, representing four classes of sources which are distinguished by the presence of the different combination of associated tracer/s. Their masses, estimated assuming a dust temperature of 20 K and adopting kinematic distances, range from 0.5 × 10 1 to 3.7 × 10 4 M , with an average mass for the sample of 1.5 × 10 3 M . The H 2 number density (n H 2 ) of the source sample ranges from 1.4 × 10 3 to 1.9 × 10 6 cm −3 , with an average of 8.7 × 10 4 cm −3 . The average radius of the sample is 0.5 pc. The visual extinction ranges from 10 to 500 mag with an average of 80 mag, which implies a high degree of embedding. The surface density ( ) varies from 0.2 to 18.0 kg m −2 with an average of 2.8 kg m −2 .Analysis of the millimetre-only sources shows that they are less massive (M = 0.9 × 10 3 M ) and smaller (R = 0.4 pc) than sources with methanol maser and/or radio continuum emission, which collectively have a mean mass of 2.5 × 10 3 M and a mean radius of 0.7 pc.
Abstract. We present a comparison of Class CH 3 OH (6.7 GHz) and H 2 O (22.2 GHz) masers at high spatial resolution in a sample of 29 massive star-forming regions. Absolute positions of both maser types are compared with mm dust continuum, cm continuum and mid-infrared sources. All maser features -regardless of the species -are associated with massive mm cores, but only 3 out of 18 CH 3 OH masers and 6 out of 22 H 2 O masers are associated with cm emission likely indicating the presence of a recently ignited massive star. These observations of a homogenous sample of massive, young star-forming regions confirm earlier results, obtained for each maser species separately, that both maser types are signposts of high-mass star formation in very early evolutionary stages. The data are consistent with models that explain CH 3 OH maser emission by radiative pumping in moderately hot cores, requiring the absence, or only weak, free-free cm continuum radiation due to recently ignited stars. Mid-infrared sources are associated with both maser types in approximately 60% of the observed fields. Thus, mid-infrared objects may power maser sites, but the detection of strong mid-infrared emission is not strictly necessary because it might be heavily extincted. A comparison of the spatial separations between the di fferent observed quantities and other properties of the star-forming regions does not reveal any correlation. Our data suggest that CH 3 OH and H 2 O masers need a similar environment (dense and warm molecular gas), but that, due to the different excitation processes (radiative pumping for CH 3 OH and collisional pumping for H 2 O), no spatial correlations exist. Spatial associations are probably coincidences due to insufficient angular resolution and projection effects. The kinematic structures we find in the different maser species show no recognizable pattern, and we cannot draw firm conclusions as to whether the features are produced in disks, outflows or expanding shock waves.
Young massive clusters (YMCs) with stellar masses of 10 4 -10 5 M and core stellar densities of 10 4 -10 5 stars per cubic pc are thought to be the "missing link" between open clusters and extreme extragalactic super star clusters and globular clusters. As such, studying the initial conditions of YMCs offers an opportunity to test cluster formation models across the full cluster mass range. G0.253 + 0.016 is an excellent candidate YMC progenitor. We make use of existing multi-wavelength data including recently available far-IR continuum (Herschel/Herschel Infrared Galactic Plane Survey) and mm spectral line (H 2 O Southern Galactic Plane Survey and Millimetre Astronomy Legacy Team 90 GHz Survey) data and present new, deep, multiple-filter, near-IR (Very Large Telescope/NACO) observations to study G0.253 + 0.016. These data show that G0.253 + 0.016 is a high-mass (1.3 × 10 5 M ), low-temperature (T dust ∼ 20 K), high-volume, and column density (n ∼ 8 × 10 4 cm −3 ; N H 2 ∼ 4 × 10 23 cm −2 ) molecular clump which is close to virial equilibrium (M dust ∼ M virial ) so is likely to be gravitationally bound. It is almost devoid of star formation and, thus, has exactly the properties expected for the initial conditions of a clump that may form an Arches-like massive cluster. We compare the properties of G0.253 + 0.016 to typical Galactic cluster-forming molecular clumps and find it is extreme, and possibly unique in the Galaxy. This uniqueness makes detailed studies of G0.253 + 0.016 extremely important for testing massive cluster formation models.
Using spectral-line observations of HNCO, N 2 H + , and HNC, we investigate the kinematics of dense gas in the central ∼ 250 pc of the Galaxy. We present scouse (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line-fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, scouse accurately describes the {l, b, v LSR } distribution of Central Molecular Zone (CMZ) gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km s −1 < σ < 53.1 km s −1 . A median dispersion of 9.8 km s −1 , translates to a Mach number, M 3D 28. The gas is distributed throughout several "streams", with projected lengths ∼ 100 − 250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km s −1 clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l, b, v LSR } space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km s −1 and 50 km s −1 clouds and Sgr C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.