A fully integrated reservoir modelling approach aiming for the best conditioned static model for an underground gas storage facility (UGSF) in a complex structural and depositional setting is presented. The Nussdorf UGSF is a depleted gas field characterized by typical deep-water depositional environment settings including sediment mass-flow systems being shed off the emerging Alpine thrust front during the Neogene. The key challenge in assessing this specific storage performance is the communication within the individual stacked sandstone layers, as well as determining the existing cross-flow between such layers through wells and due to juxtaposition across faults. Highly heterogeneous reservoir facies, representing thin-layered, stacked sandy fans embedded in marly shale, were realized by joining object-based and Gaussian simulations constrained by a gross depositional environment model. Modelling known pressure communication across intrareservoir faults required fault throws to be adjusted at scales below the limit of seismic resolution. Scoping simulation runs on a best-guess model led to a full back-loop of the geological modelling. Several loops revealed that iterations limited to property realizations were insufficient, requiring additional modifications of the structural model. Only via this expensive approach could a geologically consistent and ‘fit for purpose’ reservoir model for the UGSF be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.