1ariy electrooptical (E'O) systems incorporate an inaging sensor and a Line of Sight (LOS) deflection mirror. At a higher system level, such as for fire control or mIssile homing applications, these sensors are required to neasure angular target position very accurately. This work presents ar approach that has been developed for the modeling and calibration of such electrooptical systems. Using a generic system which includes a mirror mounted on a twoaxis LOS steering unit and an imaging sensor, a description of the mathematical model of the system is given here. This model may be used for system performance analyses as well as for developing various algorithms for the calculation of target angular position.The system model uses a number of calibration parameters such as gimbal nonorthogonality and other assembly and production errors. These are obtained from laboratory measurement results via a mathematical calibration model. We explain how the calibration model is developed from the system model. The method shown here can significantly reduce the number of computations and the look-up-table capacity needed in an operational system, as well as reducing the extent of laboratory calibrations usually required. 392
Manymechanico-electro-optical systems in use need to be adequately CALIBRATED and VERIFIED to be able to provide the high level of accuracy desired. The prime causes of system inaccuracies are error sources of different types. In case that knowledge about these errors are limited and accuracy desired is moderate, simple mapping may be satisfactory. More often, though, the high level of performance necessitates more elaborate effort to estimate most of the significant errors of the system in a deterministic way. This paper is mainly aimed at the latter case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.