Consumer liking, proximate composition, pH, Warner-Bratzler shear force, fatty acid composition, and volatile compounds were determined from the LM (longissimus thoracis) of cattle ( = 6 per diet) finished on conventional feedlot (USUGrain), legume, and grass forage diets. Forage diets included a condensed tannin-containing perennial legume, birdsfoot trefoil (; USUBFT), and a grass, meadow brome ( Rehmann; USUGrass). Moreover, representative retail forage (USDA Certified Organic Grass-fed [OrgGrass]) and conventional beef (USDA Choice, Grain-fed; ChGrain) were investigated ( = 6 per retail type). The ChGrain had the greatest ( < 0.05) intramuscular fat (IMF) percentage followed by USUGrain, the IMF percentage of which was greater ( < 0.05) than that of USUGrass and OrgGrass. The IMF content of USUBFT was similar ( > 0.05) to that of both USUGrain and USUGrass. Both grain-finished beef treatments were rated greater ( < 0.05) for flavor, tenderness, fattiness, juiciness, and overall liking compared with USUGrass and OrgGrass. Consumer liking of USUBFT beef tenderness, fattiness, and overall liking were comparable ( > 0.05) with that of USUGrain and ChGrain. Flavor liking was rated greatest ( < 0.05) for USUGrain and ChGrain, and that of USUBFT was intermediate ( > 0.05) to those of ChGrain, USUGrass, and OrgGrass. Cumulative SFA and MUFA concentrations were greatest ( < 0.05) in ChGrain and USUGrain, whereas USUGrass and OrgGrass had lower ( < 0.05) concentrations. Concentrations of cumulative SFA and MUFA in USUBFT were intermediate and similar ( > 0.05) to those of USUGrain and USUGrass. Each forage-finished beef treatment, USUGrass, OrgGrass, and USUBFT, had lower ( < 0.001) ratios of -6:-3 fatty acids. Hexanal was the most numerically abundant volatile compound. The concentration of hexanal increased with increasing concentrations of total PUFA. Among all the lipid degradation products (aldehydes, alcohols, furans, carboxylic acids, and ketones) measured in this study, there was an overall trend toward greater quantities in grain-finished products, lower quantities in USUGrass and OrgGrass, and intermediate quantities in USUBFT. This trend was in agreement with IMF content, fatty acid concentrations, and sensory attributes. These results suggest an opportunity for a birdsfoot trefoil finishing program, which results in beef comparable in sensory quality with grain-finished beef but with reduced -6 and SFA, similar to grass-finished beef.
This study aimed to determine the influence of finishing diet on beef appearance and lipid oxidation of three beef muscles. A total of 18 Angus steers were selected from three diet treatments: grass-finished (USUGrass), legume-finished (USUBFT), and grain-finished (USUGrain). After processing, longissimus thoracis (LT), triceps brachii (TB), and gluteus medius (GM) steaks were evaluated over a 7-d display period. A muscle × diet interaction was observed for instrumental lightness (L*) and redness (a*) (P ≤ 0.001). Within each combination, USUGrass was considered darker with lower (P < 0.05) L* compared with USUGrain. For USUBFT, L* was similar to USUGrain for the TB and LT, while the L* of USUBFT and USUGrain GM differed (P < 0.05). In terms of redness, LT a* values were elevated (P < 0.05) in USUGrass compared with USUBFT and USUGrain. For GM steaks, a* of USUBFT and USUGrass were each greater (P < 0.05) than USUGrain. Surface a* of TB steaks were greatest (P < 0.05) for USUGrass followed by USUBFT, and with USUGrain, being lowest (P < 0.05). An overall increase in L* was observed throughout display dependent on diet (P = 0.013). During display, USUGrain steaks had the greatest (P < 0.05) L* followed by USUBFT and USUGrass. Additionally, a day × muscle interaction was observed for a* (P = 0.009). Initially, TB steaks had the greatest (P < 0.05) a* values. However, at day 3, a* values were similar (P > 0.05) among muscles. Visual color scores were in agreement with loss of redness (a*) during display, dependent on diet and muscle type (P < 0.001). Similarly, a day × diet × muscle interaction was observed for visual discoloration (P < 0.001). Day and diet interacted to influence thiobarbituric acid reactive substances (TBARS) (P < 0.001). Initial values did not differ (P > 0.05) between USUGrain and USUBFT; however, USUGrass had lower initial (P < 0.05) TBARS than both USUGrain and USUBFT. At days 3 and 7, TBARS were greatest (P < 0.05) in USUGrain steaks, followed by USUBFT, which was greater (P < 0.05) than USUGrass. A diet × muscle interaction was observed for 10 volatile compounds originating from lipid degradation (P ≤ 0.013). These compounds were less (P < 0.05) abundant in USUGrass compared to TB or GM of USUGrain. This study determined grass-finished beef to have a darker more red color and less lipid oxidation in multiple muscles. Possible mechanisms for this may include an increase in endogenous antioxidants in grass-finished beef.
The objective of this study was to assess the impact of cattle finishing diet and muscle type on meat quality. Consumer sensory response, proximate composition, Warner-Bratzler shear force (WBSF), fatty acid composition, and volatile compounds were assessed from the gluteus medius (GM) and triceps brachii (TB) muscles of cattle ( = 6 per diet) which were grain-finished (USUGrain) on conventional feedlot or 2 forage diets, a perennial legume, birdsfoot trefoil-finished (USUBFT; ), and grass-finished (USUGrass; ). Diet had an interacting effect with muscle for all sensory attributes ( ≤ 0.002), except aroma and flavor ( ≥ 0.078). In forage-finished beef, tenderness, fattiness, overall liking, and WBSF tenderness of GM was greater ( < 0.05) than TB, whereas for USUGrain, the tenderness, fattiness, overall liking, and WBSF tenderness of both muscles were similar ( > 0.05) but the juiciness of TB was more liked than USUGrain GM ( < 0.05). The juiciness of forage-finished beef did not differ ( > 0.05) between GM and TB. Lower ( < 0.05) intramuscular fat (IMF) percent was determined for USUGrass beef in comparison with USUGrain beef. The IMF percent of USUBFT beef was similar ( > 0.05) to both USUGrass and USUGrain beef. However, IMF percent was not impacted by muscle type ( = 0.092). The ratio of -6:-3 fatty acids was affected by muscle dependent on diet ( = 0.016). The ratio of -6:-3 fatty acids was affected by the interaction of muscle × diet ( = 0.016). Between forage diets (USUGrass and USUBFT), -6:-3 ratios were similar ( > 0.05) between GM and TB, whereas within USUGrain, the GM was greater ( < 0.05) than the TB. Cumulative MUFA was greater ( < 0.05) in USUGrain compared with both USUGrass and USUBFT, which were similar ( > 0.05). Strecker aldehydes, ketones, pyrazines, and methional were affected ( ≤ 0.036) by muscle and found to have a greater concentration in GM compared with TB. Overall, consumers determined that USUGrain GM and TB had similar ( > 0.05) quality ratings. However, within forage-finished beef, the GM was perceived more frequently ( < 0.05) to be of premium quality and the forage-finished TB was more frequently ( < 0.05) rated as having unsatisfactory quality. These findings were in agreement with ratings of tenderness and overall liking. Therefore, in the context of our consumer group grilled GM and TB steaks, grain-finished beef provided more uniform quality and eating experience compared with forage-finished beef.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.