2023
DOI: 10.1111/age.13310
|View full text |Cite
|
Sign up to set email alerts
|

Weighted genomic prediction for growth and carcass‐related traits in Nelore cattle

Abstract: This study aimed to assess the impact of differential weighting in genomic regions harboring candidate causal loci on the genomic prediction accuracy and dispersion for growth and carcass‐related traits in Nelore cattle. The dataset contained 168 793 phenotypic records for adjusted weight at 450 days of age (W450), 83 624 for rib eye area (REA), 24 480 for marbling (MAR) and 82 981 for subcutaneous backfat thickness (BFT) and rump fat thickness (RFT). The pedigree harbored information from 244 254 animals born… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 85 publications
(94 reference statements)
0
1
0
1
Order By: Relevance
“…Previous studies adopted different strategies to preselect predictors by directly excluding uninformative markers via machine learning [ 45 47 ] or assigning weights to markers according to their contributions to trait variability [ 48 ]. Piles et al [ 47 ] and Li et al [ 49 ] showed that feature selection strategies improved the predictive ability of complex traits.…”
Section: Discussionmentioning
confidence: 99%
“…Previous studies adopted different strategies to preselect predictors by directly excluding uninformative markers via machine learning [ 45 47 ] or assigning weights to markers according to their contributions to trait variability [ 48 ]. Piles et al [ 47 ] and Li et al [ 49 ] showed that feature selection strategies improved the predictive ability of complex traits.…”
Section: Discussionmentioning
confidence: 99%
“…Experiencias y estrategias de otros proyectos genómicos podrían ser consideradas en futuras aplicaciones de predicción genómica para ayudar a minimizar el costo de genotipificación y maximizar la exactitud de predicción. Por ejemplo, la imputación de genotipos de animales no genotipificados podría realizarse para incrementar el tamaño de la población de referencia (Pimmentel et al 2013, Da-Silva et al 2023. Además, el genotipo de sementales probados por progenie puede ser predicho de manera exacta mediante la estructuración de una base de datos que incluya el genotipo de familias de medios hermanos y Jahuey-Martínez et al Predicción genómica en ganado bovino Ecosist.…”
Section: Jahuey-martínez Et Al Predicción Genómica En Ganado Bovinounclassified
“…Recently, wssGWAS has been successfully applied to detect complementary QTLs and candidate genes in livestock, such as growth and carcass-related traits in Nellore cattle ( Da et al, 2023 ), semen traits of Duroc pig ( Gao et al, 2019 ), and milk production traits and somatic cell score in Valle del Belice dairy Sheep ( Mohammadi et al, 2022 ). To date, the animal QTL database has collected 185 QTLs related to CW ( Hu et al, 2016 ) through early linkage analyses using microsatellite markers ( Van Kaam et al, 1999 ; Atzmon et al, 2006 ) or SNPs identified in recent association studies ( Liu et al, 2013 ; Wang et al, 2016 ).…”
Section: Introductionmentioning
confidence: 99%