High frequency wireless communication aims to provide ultra high-speed transmissions for various application scenarios. The waveform design for high frequency communication is challenging due to the requirements for high spectrum efficiency, as well as good hardware compatibility. With high flexibility and low peak-to-average power ratio (PAPR), discrete Fourier transformation spreading-based orthogonal frequency division multiplexing (DFT-s-OFDM) can be a promising candidate waveform. To further enhance the spectral efficiency, we integrate faster-than-Nyquist (FTN) signaling in DFT-s-OFDM, and find that the PAPR performance can also be improved. While FTN can introduce increased inter-symbol interference (ISI), in this paper, we deploy an isotropic orthogonal transform algorithm (IOTA) filter for FTN-enhanced DFT-s-OFDM, where the compact time-frequency structure of the IOTA filter can significantly reduce the ISI. Simulation results show that the proposed waveform is capable of achieving good performance in PAPR, bit error rate (BER) and throughput, simultaneously, with 3.5 dB gain in PAPR and 50% gain in throughput.