In close analogy with optical Fabry-Pérot (FP) interferometer, we rederive the transmission and reflection coefficients of tunneling through a rectangular double barrier (RDB). Based on the same analogy, we also get an analytic finesse formula for its filtering capability of matter waves, and with this formula, we reproduce the RDB transmission rate in exactly the same form as that of FP interferometer. Compared with the numerical results obtained from the original finesse definition, we find the formula works well. Next, we turn to the elusive time issue in tunneling, and show that the "generalized Hartman effect" can be regarded as an artifact of the opaque limit βl → ∞. In the thin barrier approximation, phase (or dwell) time does depend on the free inter-barrier distance d asymptotically. Further, the analysis of transmission rate in the neighborhood of resonance shows that, phase (or dwell) time could be a good estimate of the resonance lifetime. The numerical results from the uncertainty principle support this statement. This fact can be viewed as a support to the idea that, phase (or dwell) time is a measure of lifetime of energy stored beneath the barrier. To confirm this result, we shrink RDB to a double Dirac δ-barrier. The landscape of the phase (or dwell) time in k and d axes fits excellently well with the lifetime estimates near the resonance. As a supplementary check, we also apply phase (or dwell) time formula to the rectangular well, where no obstacle exists to the propagation of particle. However, due to the self-interference induced by the common cavity-like structure, phase (or dwell) time calculation leads to a counterintuitive "slowing down" effect, which can be explained appropriately by the lifetime assumptions.