In the fall of 1997, five two-ha plots of coarse !aconite tailings were revegetated using paper mill residue from two different manufacturers, municipal solid waste compost, municipal class B biosolids, and a mixture of paper residue and biosolids. Although previous test plot and small scale demonstration tests had shown that organic amendments could be used successfully to establish vegetation on coarse tailings, this was the first large scale application. A series of small bins (each about I meter by 3 meters) was built to examine the water quality impacts associated with the use of these amendments. After three years, percent cover on all of the amended slopes was at least 50% higher than the cover produced by the standard mineland reclamation practice. Although none of the plots met the strict numeric three-year cover standard of90%, two plots exceeded 80% and would be judged acceptable reclamation. Despite applying the amendments in the fall after the growing season, there was no substantial impact on the quality of either the surface runoff or the water that infiltrated the tailings. The tot!ll volume of surface runoff from all plots was less than 2.2% of the input precipitation. The highest average runoff was from the untreated control plot. Although the initial cost of applying organic amendments to coarse tailings may be more expensive than standard mineland reclamation practices, mining companies typically spend additional money to refertilize and reseed. Despite repeated applications of seed and fertilizer, most areas without organic amendments have not complied with Minnesota's minelandreclamation standards. If the total cost of transporting and applying the amendments is paid by the producer, there is no additional cost to the mining company. As a result, the cost to use organic amendments is the same as standard reclamation. Furthermore, it appears that both paper companies and the wastewater treatment plant can haul and apply their material at the mine for less than it costs to dispose of the material at their current sites.