Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper addresses the scheduling problem of a mixed fleet passing through a river bottleneck in multiple ways, considering the impact of streamflow velocity, the fuel cost with different sailing speeds, and the potential opportunity cost of various types and sizes of vessels. From the perspective of centralized management by river bottleneck authorities, a unified scheduling approach is proposed, and a nonlinear model is constructed, where the total fuel cost and potential opportunity cost of the fleet are minimized. To handle the nonlinear terms in the model, an outer approximation technique is applied to linearize the model while ensuring the approximation error remains controlled. The optimal value range of the nonlinear variables is also proven to ensure solution speed. Furthermore, the applicability and effectiveness of the model and solution method are validated through a real-world case study on the Yangtze River. The results show the following: (1) Unified collaborative scheduling by bottleneck authorities can ensure the optimal total cost of the fleet is effectively met and that the vessels passing through the river bottleneck are arranged under rational ways. (2) When fuel consumption is the same as that of traditional oil-fuelled vessels, giving priority to liquefied natural gas (LNG)-fuelled vessels to pass through the river bottleneck can reduce the potential opportunity cost and the total cost of the fleet reasonably. (3) In accordance with changes in the fuel price, streamflow velocity, and proportion of LNG-fuelled vessels, timely adjusting the opportunity cost expectations, vessel arrival time, and service times of bottleneck passing ways is crucial for shipowners and authorities to reduce fleet waiting times at the bottleneck, delay time, and the total cost.
This paper addresses the scheduling problem of a mixed fleet passing through a river bottleneck in multiple ways, considering the impact of streamflow velocity, the fuel cost with different sailing speeds, and the potential opportunity cost of various types and sizes of vessels. From the perspective of centralized management by river bottleneck authorities, a unified scheduling approach is proposed, and a nonlinear model is constructed, where the total fuel cost and potential opportunity cost of the fleet are minimized. To handle the nonlinear terms in the model, an outer approximation technique is applied to linearize the model while ensuring the approximation error remains controlled. The optimal value range of the nonlinear variables is also proven to ensure solution speed. Furthermore, the applicability and effectiveness of the model and solution method are validated through a real-world case study on the Yangtze River. The results show the following: (1) Unified collaborative scheduling by bottleneck authorities can ensure the optimal total cost of the fleet is effectively met and that the vessels passing through the river bottleneck are arranged under rational ways. (2) When fuel consumption is the same as that of traditional oil-fuelled vessels, giving priority to liquefied natural gas (LNG)-fuelled vessels to pass through the river bottleneck can reduce the potential opportunity cost and the total cost of the fleet reasonably. (3) In accordance with changes in the fuel price, streamflow velocity, and proportion of LNG-fuelled vessels, timely adjusting the opportunity cost expectations, vessel arrival time, and service times of bottleneck passing ways is crucial for shipowners and authorities to reduce fleet waiting times at the bottleneck, delay time, and the total cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.