2019
DOI: 10.3390/fishes4040054
|View full text |Cite
|
Sign up to set email alerts
|

Vitellogenesis in Blue Gourami is Accompanied by Brain Transcriptome Changes

Abstract: The blue gourami (Trichogaster trichopterus) is a model for hormonal control of reproduction in Anabantidae fish, but also relevant to other vertebrates. We analyzed the female blue gourami brain transcriptome in two developmental stages: pre-vitellogenesis (PVTL) before yolk accumulation in the oocytes, and high vitellogenesis (HVTL) at the end of yolk accumulation in the oocytes. RNA sequencing of whole-brain transcriptome identified 34,368 unique transcripts, 23,710 of which could be annotated by homology w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
1
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
3

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 34 publications
1
1
0
Order By: Relevance
“…Among the genes involved in controlling growth and reproduction, those with the highest sequence similarity between species were those from the HPS axis. The findings based on DNA sequence comparison presented in this review are in agreement with many other studies [1][2][3][4][5][6][7][8]48,49]. All of the tested genes in blue gourami had high similarity to their counterparts in other fishes in the order Perciformes, to which the blue gourami belongs [10], and some of them can be useful as genetic markers in other classes of fish.…”
Section: Discussionsupporting
confidence: 89%
See 1 more Smart Citation
“…Among the genes involved in controlling growth and reproduction, those with the highest sequence similarity between species were those from the HPS axis. The findings based on DNA sequence comparison presented in this review are in agreement with many other studies [1][2][3][4][5][6][7][8]48,49]. All of the tested genes in blue gourami had high similarity to their counterparts in other fishes in the order Perciformes, to which the blue gourami belongs [10], and some of them can be useful as genetic markers in other classes of fish.…”
Section: Discussionsupporting
confidence: 89%
“…Genetic variability between the organisms refers to sequence differences between their genomes, part of which is reflected in the sequence of protein-coding genes. This variation in DNA sequence can be used as a marker to distinguish between organisms, including fishes, at all systemic levels [1][2][3][4][5][6][7][8]. Compared to the much-studied genetic markers in some fish species of economic value, little research has been done with the group of labyrinth fishes.…”
Section: Introductionmentioning
confidence: 99%