Encyclopedia of Life Sciences 2018
DOI: 10.1002/9780470015902.a0000758.pub3
|View full text |Cite
|
Sign up to set email alerts
|

Virus and Host Plant Interactions

Abstract: Plant viruses infect almost all crops and cause serious diseases worldwide. Currently, viral pathogens account for the largest proportion of newly emerging plant diseases and as such, are considered a major constraint to agriculture, threatening global food security. All plant viruses have relatively small genomes with limited coding capacity. They must co‐opt cellular pathways and recruit host proteins and metabolites to complete their infection cycle. To combat virus infection, plants have evolved sophistica… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 43 publications
0
1
0
Order By: Relevance
“…The hypothesis that cpSRP54 acts upstream of JA biosynthesis and in the context of a relatively conserved antiviral defense role of JA, is supported by our findings that PMMoV and PVX infection could also downregulate the protein level of cpSRP54, which implies that cpSRP54 is a common target for various viruses to combat JA-mediated defense. It is notable that transcripts of cpSRP54 were also downregulated in TuMV-infected plants, which indicates a possible mechanism by which TuMV regulates JA synthesis at the transcriptional level (S1C Fig) . In addition to manipulating the JA pathway, plant viruses strike back on every aspect of plant defense, including RNA silencing, the ubiquitin proteosome system or autophagy, translation repression, other defense hormone and hormone regulatory pathways, and plant innate immunity, to win the arms race [54,55]. Some conserved core elements, such as the JAZ-MYC hub in JA signaling, rice auxin response factor 17 (OsARF17) in auxin signaling, and Argonaute 1 (AGO1) in RNA silencing defense pathway, have been shown to be convergently targeted by various viruses.…”
Section: Plos Pathogensmentioning
confidence: 99%
“…The hypothesis that cpSRP54 acts upstream of JA biosynthesis and in the context of a relatively conserved antiviral defense role of JA, is supported by our findings that PMMoV and PVX infection could also downregulate the protein level of cpSRP54, which implies that cpSRP54 is a common target for various viruses to combat JA-mediated defense. It is notable that transcripts of cpSRP54 were also downregulated in TuMV-infected plants, which indicates a possible mechanism by which TuMV regulates JA synthesis at the transcriptional level (S1C Fig) . In addition to manipulating the JA pathway, plant viruses strike back on every aspect of plant defense, including RNA silencing, the ubiquitin proteosome system or autophagy, translation repression, other defense hormone and hormone regulatory pathways, and plant innate immunity, to win the arms race [54,55]. Some conserved core elements, such as the JAZ-MYC hub in JA signaling, rice auxin response factor 17 (OsARF17) in auxin signaling, and Argonaute 1 (AGO1) in RNA silencing defense pathway, have been shown to be convergently targeted by various viruses.…”
Section: Plos Pathogensmentioning
confidence: 99%