Infant mammalian feeding consists of rhythmic suck cycles and reflexive pharyngeal swallows. Although we know how oropharyngeal sensation influences the initiation and frequency of suck and swallow cycles, the role of palatal sensation is unknown. We implanted EMG electrodes into the mylohyoid muscle, a muscle active during suckling, and the thyrohyoid muscle, a muscle active during swallowing, in eight infant pigs. Pigs were then bottle-fed while lateral videofluoroscopy was simultaneously recorded from the electrodes. Two treatments were administered prior to feeding and compared with control feedings: 1) palatal anesthesia (0.5% bupivacaine hydrochloride), and 2) palatal saline. Using the timing of mylohyoid muscle and thyrohyoid muscle activity, we tested for differences between treatment and control feedings for swallowing frequency and suck cycle duration. Following palatal anesthesia, four pigs could not suck and exhibited excessive jaw movement. We categorized the four pigs that could suck after palatal anesthesia as group A, and those who could not as group B. Group A had no significant change in suck cycle duration and a higher swallowing frequency after palatal saline ( P = 0.021). Group B had significantly longer suck cycles after palatal anesthesia ( P < 0.001) and a slower swallowing frequency ( P < 0.001). Swallowing frequency may be a way to predict group membership, since it was different in control feedings between groups ( P < 0.001). The qualitative and bimodal group response to palatal anesthesia may reflect a developmental difference. This study demonstrates that palatal sensation is involved in the initiation and frequency of suck and swallow cycles in infant feeding.