2007
DOI: 10.1117/12.734723
|View full text |Cite
|
Sign up to set email alerts
|

Vapor-phase-deposited organosilane coatings as hardening agents for high-peak-power laser optics

Abstract: Multilayer-dielectric (MLD) diffraction gratings are used in high-power laser systems to compress laser-energy pulses. The peak power deliverable on target for these short-pulse petawatt class systems is limited by the laser-damage resistance of the optical components in the system, especially the MLD gratings. Recent experiments in our laboratory have shown that vapor treatment of MLD gratings at room temperature with organosilanes such as hexamethyldisilazane (HMDS) produces an increase in their damage thres… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
4

Year Published

2011
2011
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 12 publications
0
1
0
4
Order By: Relevance
“…Then, ammonia is used with organic silane to modify film in the later study, an AR coating with good stability in different environment is obtained by the combined vapor phase surface treatment [ 13 , 14 ]. The vapor treatment process is simple to implement and can be carried out at room temperature and atmospheric pressure with minimal equipment requirements and minimal substrate handling [ 15 ]. However, the thickness of the film often changes markedly after vapor treatment [ 16 ], which is of no concern in single-layer film but is critical for a multi-layer broadband AR system that requires precise control of film thickness [ 17 ].…”
Section: Introductionmentioning
confidence: 99%
“…Then, ammonia is used with organic silane to modify film in the later study, an AR coating with good stability in different environment is obtained by the combined vapor phase surface treatment [ 13 , 14 ]. The vapor treatment process is simple to implement and can be carried out at room temperature and atmospheric pressure with minimal equipment requirements and minimal substrate handling [ 15 ]. However, the thickness of the film often changes markedly after vapor treatment [ 16 ], which is of no concern in single-layer film but is critical for a multi-layer broadband AR system that requires precise control of film thickness [ 17 ].…”
Section: Introductionmentioning
confidence: 99%
“…Key words: Sol-Gel; environmental stability; antireflective coating; vapor phase treatment 高功率激光系统的发展推动了与之相适应的光 学元件技术的研发。激光每通过一个光学元件的前 后表面, 就会产生大约 8%的能量损失。通过数百件 甚至数千件光学元件之后, 其能量损失将十分严重 [1] 。 基于溶胶-凝胶技术制备的 SiO 2 薄膜具有折射率可 调、结构可控、激光损伤阈值高且易于在大尺寸不 规则基板上镀膜等特性 [2] , 因此在高功率激光系统 用大口径光学元件上得到了广泛应用与研究。采用 Stöber 法 [3] 制备二氧化硅溶胶并在光学元件上镀制 的增透膜可以有效减少光能量损失, 并具备极高的 激光损伤阈值。这种增透膜的纳米多孔特性使整个 体系具有较高透过率, 但同时也限制了膜层的耐环 境稳定性 [1] 。此外, SiO 2 粒子表面存在的大量羟基致 使薄膜更加容易吸附环境中的极性污染物分子, 导 致膜层透过率下降, 使用寿命严重缩短, 无法达到 高功率激光系统的使用要求。因此, 在膜层使用前必 须对其进行适当的处理, 以满足使用环境的需求。 目前, 对于增透膜的改性手段主要分为溶胶改 性和薄膜表面后处理两种 [4] 。溶胶改性从溶胶合成 机理出发, 在溶胶老化阶段引入相应的官能团取代 羟基, 在 SiO 2 颗粒表面形成一个能阻挡污染物的外 壳, 并使得颗粒间编织更加紧密, 从而达到有效抵 抗外界环境污染物的效果。近年来通过在 SiO 2 溶胶 中 添 加 全 氟 硅 烷 [5][6][7][8][9] 、 有 机 硅 烷 [10][11][12][13][14][15][16][17][18] 或 有 机 聚合 物 [19][20] 等改性方式来提高薄膜的耐候性。而薄膜表 面后处理是通过向膜层表面引入相应官能团, 覆盖 在 SiO 2 颗粒堆积成的薄膜表面, 也相当于编织成一 个抗污染外壳, 对薄膜进行有效地保护, 从而由外 向内改善薄膜特性。表面后处理方法操作简便, 薄 膜的化学组成可以通过与多种不同的有机硅共同反 应来调控, 也易于对高功率激光系统中大尺寸光学 元件进行处理。与溶胶改性方法相比, 表面后处理 法具有以下优势 [21] : ①只有纯净的气态物质才会与 薄膜表面接触, 进而对薄膜进行修饰, 很大程度上 减少了其它大分子杂质对薄膜的影响; ②只有对薄 膜进行完全表面修饰所需要的物质会参与其中, 避 免了任何未参与反应的物质残留在薄膜表面, 使得 薄膜表面修饰程度达到最大化。 徐耀 [22][23][24][25] 、 霍艳芳 [26] 和沈军 [27][28] [30] 。 2983 cm -1 附近的吸收峰可能来源于 溶胶中的有机残余物(乙醇或未水解的 TEOS) [31] , 经过氨水气氛处理 6 h 后发生进一步水解-缩聚而消 失。950 cm - 出现的吸收峰对应于次甲基的弯曲振动, 2852、 2921 cm -1 处出现的吸收峰对应于亚甲基和甲基的 对称伸缩振动和反对称伸缩振动 [32] Fig. 6 Transmittance spectra of (a) unmodified SiO 2 coating and (b) SiO 2 coating modified via NH 3 /HTMS vapor phase treatment after being exposed in the humid environment; Transmittance spectra of (c) unmodified SiO 2…”
unclassified
“…Durante dicho proceso, los vidrios recibían un baño sónico en jabón industrial, luego eran sometidos a solución piraña, enjuagados con agua desionizada y etanol, secados con nitrógeno molecular y por último encerrados dentro de un desecador con hexametíldisilazano (HMDS) por 24 horas para que dicho compuesto al evaporarse se depositara en la superficie de los sustratos de vidrio haciendo así su superficie hidrófoba [111][112][113][114], todo tal y como se describe en 9.4. El HMDS es un material utilizado en la industria de semiconductores como agente de acoplamiento para aumentar la adhesión entre una oblea de silicio y un recubrimiento foto resistente [115] y su estructura química está dada en la Figura 34 [113,115].…”
Section: Silanizaciónunclassified
“…En todo el proceso de silanización el ataque químico en solución piraña resulta de gran importancia ya que esta mezcla de tres partes de ácido sulfúrico (H 2 SO 4 ) y una parte de peróxido de hidrógeno (H 2 O 2 ), además de remover residuos orgánicos, hidroxila la superficie del vidrio agregando grupos hidroxilo (OH) y la hace hidrófilas [113,116]. Una vez que la superficie de los sustratos de vidrio ha sido atacada, el HMDS puede adherirse de acuerdo al mecanismo de reacción mostrado en la Figura 35, [115].…”
Section: Figura 34: Estructura Química Del Hmdsunclassified
See 1 more Smart Citation