2017
DOI: 10.1016/j.actamat.2017.05.074
|View full text |Cite
|
Sign up to set email alerts
|

Vacancy mediated alloying strengthening effects on γ/γ′ interface of Ni-based single crystal superalloys: A first-principles study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 71 publications
(9 citation statements)
references
References 35 publications
0
7
0
1
Order By: Relevance
“…Meanwhile, three substitution sites (Al i , Al i –1 , Al i –2 ) from the interface to the bulk region are employed to determine the optimal substitution position of the X atom (Figure a). To evaluate the site preference of the alloying atoms and the stability of the alloyed interface, the relative interface formation energy (Δ E f ) was calculated using the following equation , where E interface ( E interface X ) is the total energy of the original (alloyed) interface supercell; N Total and N X are the numbers of the total atoms and alloyed atoms in the supercell, respectively; E Al bulk and E X bulk are the ground state energies of the individual atoms in the corresponding elemental bulk states, respectively; and Δ E f is the relative formation energy of the alloyed interface. A negative Δ E f value indicates that the alloyed interface is more stable than the original interface, and a positive value indicates interface instability.…”
Section: Results and Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Meanwhile, three substitution sites (Al i , Al i –1 , Al i –2 ) from the interface to the bulk region are employed to determine the optimal substitution position of the X atom (Figure a). To evaluate the site preference of the alloying atoms and the stability of the alloyed interface, the relative interface formation energy (Δ E f ) was calculated using the following equation , where E interface ( E interface X ) is the total energy of the original (alloyed) interface supercell; N Total and N X are the numbers of the total atoms and alloyed atoms in the supercell, respectively; E Al bulk and E X bulk are the ground state energies of the individual atoms in the corresponding elemental bulk states, respectively; and Δ E f is the relative formation energy of the alloyed interface. A negative Δ E f value indicates that the alloyed interface is more stable than the original interface, and a positive value indicates interface instability.…”
Section: Results and Discussionmentioning
confidence: 99%
“…from the interface to the bulk region are employed to determine the optimal substitution position of the X atom (Figure 3a). To evaluate the site preference of the alloying atoms and the stability of the alloyed interface, the relative interface formation energy (ΔE f ) was calculated using the following equation 30,46…”
Section: Interfacial Bonding Strengthmentioning
confidence: 99%
See 1 more Smart Citation
“…The calculated results showed that the most preferable substitution sites of alloying elements didn't be changed by a Ni vacancy on (001)γ' plane, except Cr element, and the alloying elements at Al site in γ' enhanced the interfacial bonding strength of γ/γ' interface, among which the strengthening effect of Re was the best. 17 Although many solid-solution strengthening elements, such as Ru, Rh, Pd, Ir, Os, Re, Mo, Ta, Cr and Pt, have been researched by first−principles simulations, there are few studies about Nb element which can improve solid solution strengthening effect of γ matrix phase (Ni crystal). In order to reveal the influence of Nb on γ matrix phase from the atomic and electronic perspective, Ni system doping with Nb element in five different concentrations are systematically investigated by first−principles simulations.…”
Section: Introductionmentioning
confidence: 99%
“…大量的 γ/γ′相界面。γ/γ′相界是镍基单晶超合金中的主要结构缺陷,在很大程度上 可以影响镍基单晶合金的力学性能 [3] 。高温合金的组成、结构和性能是紧密相关 的。镍基高温合金中还含有很多种合金元素 [4,5] ,其力学性能也会受到合金原子在 γ/γ′界面处分布的影响,在合金中掺杂一定量的合金化元素就可以对合金力学性 能起到改善作用。 Chen 等人 [6] 研究了多种元素在 Ni/Ni 3 Al 相界面上的强化效果及 其机理,使用第一性原理计算了 Mo、W、Ti、Re、Cr 等元素添加前后界面剪切 强度和结合强度,发现 W 对剪切强度增强效果最好,Mo 对界面结合强度增强效 果最好,也发现增强背后的机理是大多数合金原子与近邻的 Ni 原子之间会产生 强成键作用;通过研究 S 掺杂在界面中的成键特性发现界面处 S 与 Ni 原子间形 成的强键是导致界面硫脆的主要原因 [7] 。在断裂强度方面的研究,Gong [8] 等人研 究了 Re、Ru、Ta、Cr、W、Co 等金属元素添加对界面的强化作用,通过计算界 面断裂功发现对界面断裂强度提升效果最好的是 Re 元素,Co 元素的作用效果较 差。Peng 等人 [9][10][11][12] Re 和 P 进行在界面的协同化研究, Re-P 原子对相互排斥但 Re 的添加对 P 的分布 位置无影响。温玉锋 [13] 等人采用第一性原理方法对层错能进行了计算研究,发现 合金原子与 Ni 原子之间半径差的不同以及价电子数差的不同都会对层错能大小 3 产生影响,但合金化原子掺杂与否对层错能的影响更为重要,其中 Re、W、Mo 元素对合金固溶强化效果最好。Zhu [14] 等人也利用第一原理方法从形成能、断裂 能以及层错能角度研究了合金化元素 Re、 Ta 和 W 元素对 Ni/Ni 3 Al 界面的强化行 为,得出合金原子对界面的强化行为是通过与近邻 Ni 原子的杂化来完成的,其 中 Re 原子的杂化行为最强。 Zhao [15] 等人研究了在界面上 Ni 空位的存在对合金元 素占位分配的影响以及空位与合金元素对界面强度的协同作用,发现除 Cr 元素 之外,Ni 空位的存在不会改变合金元素的占位,而且当界面中存在空位时合金元 素依然对界面表现出强化效果,其中 Re 元素的作用效果是最突出的,提高了合 金的蠕变性能。孙敏 [16] 等人进行了关于纯界面和 Re 掺杂界面的空位计算,结合 攀爬图像-微动弹性带(CI-NEB)方法进行密度泛函理论计算研究了镍基单晶高温 合金的扩散现象,描述了空位介导的扩散的四种情况的理论模型以及扩散过程, 计算了空位形成能,迁移能和活化能,并研究扩散行为的电子效应。 Re 可以显著提高镍基单晶高温合金的蠕变和疲劳断裂强度 [17] ,这是通过 Re 进入合金的 γ 基体中阻碍位错运动来实现的 [18] ,进入 γ′相的也可以产生对 γ′相的 强化作用 [19] 。而 Ta 是一种具有高熔点且能对合金起到固溶强化作用的合金元素,…”
unclassified