Background
The incidence of obesity is increasing worldwide, and it is a risk factor for diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Our previous study had demonstrated that high-fat diet induced increased weight gain, fat weight, serum cholesterol, triglyceride, and ATL levels in liver, and influenced the diversity and composition of cecal microbiota in mice. Hence, this study aimed to investigate the roles of the gut microbially derived metabolites and liver metabolites between the obese and lean mice, focusing on their association with the progression of obesity induced by high-fat diet (HFD).
Methods
An obesity model in mice was established with HFD for 16 weeks. Cecal contents and liver tissues metabolomics based on ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry and orthogonal partial least squares discriminant analyses (OPLS-DA) was performed to identify the alterations in metabolites associated with obese mice.
Results
Obese and lean groups were clearly discriminated from each other on OPLS-DA score plot and major metabolites contributing to the discrimination were mainly involved in glycerophospholipid metabolism, primary bile acid biosynthesis, and biosynthesis of unsaturated fatty acids pathways. HFD-induced alterations of 19 metabolites in liver and 43 metabolites in cecum contents were identified as potential biomarkers related to obesity. Specifically, chenodeoxycholic acid, taurochenodeoxycholate, and tauroursodeoxycholic acid in liver were elevated 35.94, 24.36, and 18.71-fold, respectively. PI(P-16:0/18:1(9Z)), PG(19:0/16:0), PS(P-16:0/20:2(11Z,14Z)), PI(22:1(11Z)/12:0), and PE(21:0/0:0) in cecum were enhanced 884, 640.96, 226.63, 210.10, 45.13-fold in comparison with the lean mice. These metabolites were the most important biomarkers for discriminating between the obese and lean mice. In addition, cecum contents metabolites were strongly correlated with hepatic metabolites through gut-liver axis analysis.
Conclusions
HFD increased lipid profiles (i.e. glycerophospholipids, PC, PE, PI, PG, and PS) and total bile acid (primary and secondary bile acid) in liver and cecum, suggesting that they may play an important role in the progression of obesity. These metabolites can be used to better understand obesity and related disease induced by HFD. Furthermore, the level alterations of these metabolites can be used to assess the risk of obesity and the therapeutic effect of obesity management.