Models of forest growth and yield (G&Y) are a key component in long-term strategic forest management plans. Models leveraging the industry-standard “empirical” approach to G&Y are frequently underpinned by an assumption of historical consistency in climatic growing conditions. This assumption is problematic as forest managers look to obtain reliable growth predictions under the changing climate of the 21st century. Consequently, there is a pressing need for G&Y modelling approaches that can be more robustly applied under the influence of climate change. In this study we utilized an established forest gap model (JABOWA-3) to simulate G&Y between 2020 and 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5 in the Canadian province of Newfoundland and Labrador (NL). Simulations were completed using the province’s permanent sample plot data and surface-fitted climatic datasets. Through model validation, we found simulated basal area (BA) aligned with observed BA for the major conifer species components of NL’s forests, including black spruce [Picea mariana (Mill.) Britton et al.] and balsam fir [Abies balsamea (L.) Mill]. Model validation was not as robust for the less abundant species components of NL (e.g., Acer rubrum L. 1753, Populus tremuloides Michx., and Picea glauca (Moench) Voss). Our simulations generally indicate that projected climatic changes may modestly increase black spruce and balsam fir productivity in the more northerly growing environments within NL. In contrast, we found productivity of these same species to only be maintained, and in some instances even decline, toward NL’s southerly extents. These generalizations are moderated by species, RCP, and geographic parameters. Growth modifiers were also prepared to render empirical G&Y projections more robust for use under periods of climate change.