2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) 2019
DOI: 10.1109/mipr.2019.00047
|View full text |Cite
|
Sign up to set email alerts
|

Using Convolutional Neural Networks to Detect and Extract Retinal Blood Vessels in Fundoscopic Images

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 21 publications
0
0
0
Order By: Relevance
“…ContainingmuchlessparametersthanAlexNetandVGG16,theInceptionarchitecture ofGoogLeNetperformswellevenunderstrictconstraintsonmemoryandcomputational budget (Szegedy, 2015;Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016). The savingofcomputationalcostisachievedbyintroducingchannelconcatenationand1 ×1convolution"bottleneck"layers.ThetotalnumberofparametersofGoogLeNet is only 5 million, greatly reduced from AlexNet and VGG16.…”
Section: Inception Netmentioning
confidence: 99%
“…ContainingmuchlessparametersthanAlexNetandVGG16,theInceptionarchitecture ofGoogLeNetperformswellevenunderstrictconstraintsonmemoryandcomputational budget (Szegedy, 2015;Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016). The savingofcomputationalcostisachievedbyintroducingchannelconcatenationand1 ×1convolution"bottleneck"layers.ThetotalnumberofparametersofGoogLeNet is only 5 million, greatly reduced from AlexNet and VGG16.…”
Section: Inception Netmentioning
confidence: 99%