2022
DOI: 10.1080/09540091.2022.2077913
|View full text |Cite
|
Sign up to set email alerts
|

Using active learning selection approach for cross-project software defect prediction

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 28 publications
0
2
0
Order By: Relevance
“…Luo et al 31 introduced a two‐stage active learning method combining the clustering and support vector machine techniques, which improved the performance of the predictor with less labeling effort. Mi et al 32 also used clustering and active learning algorithms to filter and label representative data from the target versions. They argued that it solved the class imbalance problem in cross‐project data and improved the defect prediction performance.…”
Section: Related Workmentioning
confidence: 99%
“…Luo et al 31 introduced a two‐stage active learning method combining the clustering and support vector machine techniques, which improved the performance of the predictor with less labeling effort. Mi et al 32 also used clustering and active learning algorithms to filter and label representative data from the target versions. They argued that it solved the class imbalance problem in cross‐project data and improved the defect prediction performance.…”
Section: Related Workmentioning
confidence: 99%
“…For example, in a cross-project prediction method based on feature migration, He et al [10] obtained the optimal subset of attributes from the source and target projects to build defect prediction models as a way to alleviate the problem of insufficient data for the target projects. Mi et al [11] proposed an active learning based data selection algorithm considering that the prior knowledge of the target item can match the source item with the defect pattern of the target item. Menzies et al [12] implemented cross-item defect prediction by building local models through clustering clusters of source and target items.…”
Section: Software Defect Predictionmentioning
confidence: 99%
“…Новостворені проекти не мають достатнього обсягу навчальних даних, тому CPDP можна використовувати для створення предикторів дефектів за допомогою інших проектів. Однак CPDP не враховує попередніх знань про цільові елементи та дисбаланс класів у даних вихідного елемента [30].…”
Section: вступ / Introductionunclassified