The economic basis of the Brazilian midwest is agriculture, concentrating most of the grain production in the country. With the purpose of increasing yield, farmers have intensified land use and the use of atrazine among other pesticides, which can supposedly compromise human health and photosynthetic metabolism of plant species from Cerrado, such as Handroanthus heptaphyllus. The aim of this study was to determine experimentally the sensitivity level of H. heptaphyllus to atrazine, by measuring gas exchange, chlorophyll a fluorescence, chloroplastidic pigments, and membrane permeability. The experiment was conducted in a factorial scheme. Nine‐month‐old H. heptaphyllus plants were treated with six realistic doses of atrazine: 0, 25, 50, 100, 200, and 400 g a.i. ha–1 (corresponding to 10, 20, 40, 80, and 100% of the commercial dose recommended for corn crops, respectively), with five replications. Evaluations were performed at 12, 36, 84, 180, and 276 h after treatment application. Photosynthesis, the effective quantum yield of photosystem II, and electron transport rate were gradually reduced by the action of atrazine. On the other hand, the nonphotochemical quenching increased gradually, which indicates that this mechanism was not sufficient to avoid oxidative stress and cellular damage in H. heptaphyllus treated plants. Based on these results, we concluded that the action of the herbicide in the photosynthetic reduction occurs by the electron transport rate limitation. Therefore, H. heptaphyllus trees are at risk in Cerrado areas next to agricultural lands.