A new strategy for the synthesis of Buckybowls is presented and initial attempts to implement it are reported. This involves annulation of further rings onto polycyclic aromatic systems that prefer to be planar but have been "pre-bent" by the installation of a tether. Pyrenophane 2b reacts with TCNE and PTAD to give 1:1 and 1:2 adducts, respectively. The less strained pyrenophane 2c is unreactive toward TCNE but gives a 1:2 adduct with PTAD. Attempted electrophilic aromatic brominations of pyrenophane 2e under a variety of conditions were unsuccessful, as were attempts to brominate cyclophanediene 1c, the direct synthetic precursor of 2c. Tether cleavage and addition reactions occurred rather than substitution. In an effort to circumvent tether cleavage problems, [7]-, [8]- and [9](2,7)pyrenophanes 22b-d were prepared. However, attempted bromination and Friedel-Crafts acylations failed. Evidence for the fleeting existence of [6](2,7)pyrenophane 22a was also obtained. Comparison of structural data (X-ray and AM1 calculations) for the pyrenophanes 22a-d with their 1,n-dioxa analogues 2a-d indicates that the nature of the tether has a strong effect on the degree of bend in the pyrene moiety and this led to the identification of trioxapyrenophane 28 as the next target in the quest for increasingly bent pyrenes.