2012
DOI: 10.1002/cphc.201101001
|View full text |Cite
|
Sign up to set email alerts
|

Unfolding a Photoswitchable Azo‐Foldamer Reveals a Non‐Covalent Reaction Mechanism

Abstract: Simulations on photoswitching of an azobenzene-functionalized helical mPE foldamer reveal several distinct non-covalent reaction channels. It is expected that distinct products can be selectively (de)stabilized by attaching suitable side chains to the backbone. The methodology presented could be applied to study photoinduced manipulation of AB-functionalized proteins.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2013
2013
2017
2017

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 34 publications
0
3
0
1
Order By: Relevance
“…With this setup, the authors were able to exert a force of 200 pN to the AFM tip. Other groups exploited the mechanical work performed by azobenzene to induce structural changes in peptides, DNA, and synthetic foldamers. Photoswitches from the spiropyran family were also shown to be applicable in this context. , Quantum mechanochemistry can make a key contribution to our understanding of the mechanical effects during photoswitching by calculating the efficiency of energy conversion and transmission processes. With the use of computational methods, it has been possible, for example, to juxtapose purely mechanical, photochemical, and combined photomechanochemical switching of the azobenzene photoswitch. This knowledge paves the way for an optimization of molecular machines by increasing the amount of mechanical work they can perform.…”
Section: Introductionmentioning
confidence: 99%
“…With this setup, the authors were able to exert a force of 200 pN to the AFM tip. Other groups exploited the mechanical work performed by azobenzene to induce structural changes in peptides, DNA, and synthetic foldamers. Photoswitches from the spiropyran family were also shown to be applicable in this context. , Quantum mechanochemistry can make a key contribution to our understanding of the mechanical effects during photoswitching by calculating the efficiency of energy conversion and transmission processes. With the use of computational methods, it has been possible, for example, to juxtapose purely mechanical, photochemical, and combined photomechanochemical switching of the azobenzene photoswitch. This knowledge paves the way for an optimization of molecular machines by increasing the amount of mechanical work they can perform.…”
Section: Introductionmentioning
confidence: 99%
“…Wir möchten hier nur sehr knapp eine Auswahl nennen und verweisen den Leser für weitere Informationen auf die angegebenen Referenzen. Von anderen Forschungsgruppen untersuchte dynamische Bewegungssysteme und/oder Konformationsänderungen umfassen: 1) das helikale Umwickeln von Quinquepyridin, Bishydrazonen, Pentaoxyethylen sowie anderen Liganden um Metallionen; 2) Bewegungsprozesse, Schalter, Metallkomplexe und Sensoren auf Basis von Hydrazonen;, 3) Faltung‐Entfaltung eines Terpyridin‐Komplexes; 4) die Ausweitung von helikalen Molekülen durch die Bildung von doppelhelikalen Dimeren; 5) das lösungsmittelinduzierte oder Chaperon‐assistierte Falten und Entfalten oder pH‐modulierte Schalter in helikalen Strängen (Änderung der helikalen Steigung); 6) eine sprungfederartige Bewegung (partielles Entfalten und Änderung der Helix‐Gangweite; 7) eine temperaturkontrollierte Steigerung der Helix‐Laufweite; 8) Metallionen‐assistierte Prozesse; 9) eine oligomere o ‐Phenylenhelix, die dynamische Bewegung als Reaktion auf eine Änderung des Redoxzustands eingeht; 10) reversibles Abwickeln einer Oligo‐Resorcinol‐Doppelhelix; 11) das Falten und Entfalten von Poly(ethylenglycol) und Poly(ethylenimin) in Lösung; 12) das anioneninduzierte Falten von aromatischen Amid‐basierten Oligomeren; 13) das konformative Schalten von phenolischen Oligoamiden (linear zu gebogen); 14) photoschaltbare Foldamere;, 15) das säureinduzierte molekulare Falten und Entfalten von Pyrimidin‐Amid‐basierten Oligomeren; 16) das durch Komplexierung induzierte Entfalten von heterocyclischen Harnstoffderivaten; 17) das Falten/Entfalten von elektrochemisch adressierbaren Molekülen; 18) das lösungsmittelabhängige Falten/Entfalten von oligomeren Cholaten oder Foldameren; 19) das reversible Entfalten einer Helix einschließlich Depolymerisierung; 20) das stimulierte Falten und Entfalten von Polymeren; 21) das per pH‐Wert adressierbare Umwickeln oder Falten/Entfalten von DNA i‐Motiven; 22) die lösungsmittelinduzierte Konformationsänderung von Poly( m ‐ethinylpyridinen); 23) die akkordeonartige Oszillation von Helices oder molekularen Sprungfedern; und 24) die hydrazonbasierten zwei‐ und mehrkernigen Komplexe (oft erzeugt durch Entwindung von gebogenen Liganden) . Übersichtsartikel zu abstimmbaren helikalen Strukturen und die funktionelle ...…”
Section: Einführungunclassified
“…We just very briefly mention here a number of them, referring the reader to the references given for more detailed information. Thus, dynamic motional systems and/or conformational changes studied by other research groups involve, in particular: 1) helical wrapping of quinquepyridine, bishydrazones, and pentaoxyethylene as well as other ligands around metal ions; 2) motional processes, switches, metallocomplexes, and sensors involving hydrazones;, 3) folding/unfolding of a terpyridine complex; 4) extensions of helical molecules with formation of double‐helical dimers; 5) solvent‐induced or chaperone‐assisted folding and unfolding or pH‐modulated switches in helical strands (change of the helical pitch); 6) spring‐like motion (partial unfolding and change of the helical pitch); 7) temperature‐controlled pitch extension; 8) metal‐ion‐assisted processes; 9) an oligomeric o ‐phenylene helix that undergoes a redox‐responsive dynamic motion; 10) reversible unwinding of an oligoresorcinol double helix; 11) the folding and unfolding of poly(ethylene glycol) and poly(ethylene imine) in solution; 12) anion‐induced folding of aromatic amide‐based oligomers; 13) linear‐to‐bent conformational switching of phenolic oligoamides; 14) photoswitchable foldamers;, 15) acid‐induced molecular folding and unfolding of a pyrimidine amide based oligomer; 16) complexation‐induced unfolding of heterocyclic ureas; 17) folding/unfolding of electrochemically responsive molecules; 18) solvent‐dependent folding/unfolding of oligomeric cholates or foldamers; 19) reversible unfolding of a helix with depolymerization; 20) stimuli‐responsive folding and unfolding of a polymer; 21) pH‐responsive wrapping or folding and unfolding of the DNA i‐motif; 22) solvent‐induced conformational changes of poly( m ‐ethynylpyridine)s; 23) accordion‐like oscillations of helices or molecular springs; and 24) hydrazone‐based di‐ and polynuclear complexes (often generated by unbending of bent ligands) . Reviews on tunable helical structures and the functional role of foldamers have been published recently.…”
Section: Introductionmentioning
confidence: 99%