Abstract:In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C-C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII) oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP) has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO) for the mild oxidation of primary and secondary alcohols to carbonyl compounds. Its use in the oxidation of other functionalities is known and recently, its utility in new synthetic transformations has been demonstrated. New processes, synthetic applications, theoretical studies and unusual transformations, published in the last eight years (2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013), in the chemistry of these two oxo-species, will be covered in this review with the aim of offering a clear picture of their reactivity. When appropriate, related oxidative transformations mediated by other metal oxo-species will be presented to highlight similarities and differences. An historical overview of some aspects of the ruthenium tetroxide chemistry will be presented as well.