BackgroundHigh‐intensity focused ultrasound (HIFU) is currently used for the treatment of various diseases, but it still lacks a reliable technique in the preoperative stage to accurately place its “energy blade” onto diseased targets. Acoustic radiation force imaging (ARFI) was recently introduced to tackle this issue, but its applicability and limitations were not clear.PurposeThe aim of this study was to evaluate the performance of ARFI method in prediction of HIFU focal location at the preoperative stage.MethodsA point spread function (PSF) localization method, which was borrowed from the ultrasound super resolution field, was used to validate the core autocorrelation‐based motion estimation algorithm in the ARFI procedure. Accuracy of the ARFI method for estimating the HIFU focus were tested with in vitro and ex vivo experiments with a clinically equivalent HIFU system. Comparisons were made between the estimated focal locations and those of the damaged area after the testing objects were cut open.ResultsResults showed that the PSF localization was able to serve as a validating method for motion detection only when the tissue displacement was large. With the ARFI method, location of the HIFU focus could be accurately predicted by a 2D motion map preoperatively, and the axial spatial errors were less than 0.5 mm. However, the derived 2D motion maps can only be valuable when the acoustic stimulation in ARFI were strong enough, which was probably due to the fact that the HIFU focal locations were at large depths and the ultrasound imaging signal had low signal to noise ratio.ConclusionThe ARFI method was indeed an accurate technique for preoperatively predicting HIFU focus in vitro and ex vivo. If clinical applications were to be considered, particularly in deep tissues, efforts might need to be made to improve ability of the ultrasound motion estimation technique.