2019
DOI: 10.48550/arxiv.1905.02945
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Two-scale homogenization of abstract linear time-dependent PDEs

Abstract: Many time-dependent linear partial differential equations of mathematical physics and continuum mechanics can be phrased in the form of an abstract evolutionary system defined on a Hilbert space. In this paper we discuss a general framework for homogenization (periodic and stochastic) of such systems. The method combines a unified Hilbert space approach to evolutionary systems with an operator-theoretic reformulation of the well-established periodic unfolding method in homogenization. Regarding the latter, we … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?