2022
DOI: 10.1016/j.jestch.2021.08.003
|View full text |Cite
|
Sign up to set email alerts
|

Two degree of freedom fractional PI scheme for automatic voltage regulation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
11
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 27 publications
(15 citation statements)
references
References 33 publications
0
11
0
Order By: Relevance
“…In addition to the comparative assessment against the algorithms used in the above analyses, further comparisons were made with recently reported optimization techniques in the literature (See Table 11 ). This techniques include hybrid atom search particle swarm optimization (h-ASPSO) based PID controller [ 46 ], improved marine predators algorithm (MP-SEDA)-tuned FOPID controller [ 47 ], modified artificial bee colony (IABC) based LOA-FOPID [ 48 ], equilibrium optimizer (EO) based TI λ DND 2 N 2 [ 23 ], whale optimization algorithm (WOA) based PIDA [ 49 ], symbiotic organism search (SOS) algorithm-based PID-F controller [ 50 ], mayfly optimization algorithm based PI λ1 I λ2 D μ1 D μ2 controller [ 25 ], Levy flight improved Runge-Kutta optimizer (L-RUN) based PIDD 2 controller with master/slave approach [ 51 ], particle swarm optimization based 2DOF-PI controller with amplifier feedback [ 52 ], modified artificial rabbits optimizer (m-ARO) based FOPIDD 2 controller [ 53 ], genetic algorithm (GA) based fuzzy PID controller [ 54 ], sine-cosine algorithm (SCA) based FOPID controller with fractional filter [ 55 ], imperialist competitive algorithm (ICA) based gray PID controller [ 56 ], Rao algorithm based multi‐term FOPID controller [ 57 ], whale optimization algorithm (WOA) based 2DOF-FOPI [ 58 ], chaotic yellow saddle goatfish algorithm (C-YSGA) based FOPID controller [ 59 ] and crow search algorithm (CSA) based FOPI controller [ 31 ]. The results indicate that the QWGBO algorithm outperforms several state-of-the-art optimization methods, demonstrating its effectiveness in AVR system control.…”
Section: Simulation Results and Discussionmentioning
confidence: 99%
“…In addition to the comparative assessment against the algorithms used in the above analyses, further comparisons were made with recently reported optimization techniques in the literature (See Table 11 ). This techniques include hybrid atom search particle swarm optimization (h-ASPSO) based PID controller [ 46 ], improved marine predators algorithm (MP-SEDA)-tuned FOPID controller [ 47 ], modified artificial bee colony (IABC) based LOA-FOPID [ 48 ], equilibrium optimizer (EO) based TI λ DND 2 N 2 [ 23 ], whale optimization algorithm (WOA) based PIDA [ 49 ], symbiotic organism search (SOS) algorithm-based PID-F controller [ 50 ], mayfly optimization algorithm based PI λ1 I λ2 D μ1 D μ2 controller [ 25 ], Levy flight improved Runge-Kutta optimizer (L-RUN) based PIDD 2 controller with master/slave approach [ 51 ], particle swarm optimization based 2DOF-PI controller with amplifier feedback [ 52 ], modified artificial rabbits optimizer (m-ARO) based FOPIDD 2 controller [ 53 ], genetic algorithm (GA) based fuzzy PID controller [ 54 ], sine-cosine algorithm (SCA) based FOPID controller with fractional filter [ 55 ], imperialist competitive algorithm (ICA) based gray PID controller [ 56 ], Rao algorithm based multi‐term FOPID controller [ 57 ], whale optimization algorithm (WOA) based 2DOF-FOPI [ 58 ], chaotic yellow saddle goatfish algorithm (C-YSGA) based FOPID controller [ 59 ] and crow search algorithm (CSA) based FOPI controller [ 31 ]. The results indicate that the QWGBO algorithm outperforms several state-of-the-art optimization methods, demonstrating its effectiveness in AVR system control.…”
Section: Simulation Results and Discussionmentioning
confidence: 99%
“…In control systems, various techniques are available for assessing the stability of dynamic systems. One commonly used technique is the pole-zero map, which offers a straight forward way to analyze the system stability due to its simplicity [26]. Additionally, stability analysis in the frequency domain can be conducted by examining the conventional stability limits GM and PM, derived from the Bode diagram [27].…”
Section: B Literature On Stability Analysismentioning
confidence: 99%
“…A simple but effective form of closed-loop control is a two-degrees-of-freedom (2DoF) structure and has proven quite helpful for the AVR [15]. Recently, FOPID and TID controllers with 2DoF were tested in a two-area power system composed of a wind turbine generator and redox flow battery [16].…”
Section: Introductionmentioning
confidence: 99%